SpecTcl Root ntuple plugin

Ron Fox

SpecTcl Root ntuple plugin
by Ron Fox

Revision History

Revision 1.0 February 5, 2008 Revised by: RF
Original Release

Table of Contents

1. Introduction

2. Installation

3. Usage

3.1. Loading the plugin
3.2, SPECTCLFIILELS ..ttt ettt ettt ettt sae et bbb b et e e e
3.3. Specifying filters to output root ntuple files
3.4. Contents of a root ntuple filter

A. Sample GUI extensions to specify filter output format.

iii

List of Figures

A-1. Adding a menu entry to the Filter Menuccccooiiiiiiniii s 6
A-2. Getting a list Of diSabled fIlLETS......ccuoiuiiiiiiitieieie ettt st 7
A3 FAIEET REIP TEX L.ttt ettt bbbt ettt e b et bt et e s b e bt et e b e e st e sbeestenbesbeentenbeane 7
A-4. Obtaining a list of known filter fOrmats...........ccooeriiriiiiniiiiieie et 8
A-5. Laying OUt the WIAZEE......ccueeiiiiriiiierieiieeet ettt ettt sttt sbt et s b et e sbe et e besbeentenbeens 9
A-6. The filter format dialog........cceeviriiriiiirieieiee ettt sttt et et 11
A-7. Generating the fOrmat MEMUcovuiiiriiriiieiceecet ettt ettt ettt st e e ene 11
A-8. formatSelected - processing MeNU SEIECTIONSccoueruerrerieriieniirieeierieetenieettetesteete e eee e sieeresbeene 12

Chapter 1. Introduction

Many users of SpecTcl have various ad-hoc methods to move NSCL event data into Root. The Root
ntuple plugin hooks into the SpecTcl filter mechanism and supplies a generalized scheme for migrating
pre-sorted data from any data that SpecTcl can analyze to Root ntuple files.

This plugin has the following pre-requisites:

1. Installation of SpecTcl-3.2 or later (no pre-releases of 3.2).

2. Installation of Root. The plugin has been tested with Root 5.14 but should work with almost any
version of Root.

The remainder of this document:

« Describes how to configure and install the plugin
+ Describes how to load and use the plugin.

» Provides an appendix that provides a sample extension to the folder Gui that allows you to specify
filter formats for inactive filters.

Chapter 2. Installation

While the plugin can be installed anywhere, I recommend installing it in the SpecTcl installation
directory. This makes loading it easier. The plugin is installed by following the usual two step configure
and make install procedure used by most Unix/Linux open source software.

The configure script configures the Makefiles for build and installation. It accepts the followign switches
that are specific to the plugin:

—-—help

Prints out exhaustive help describing the options and variables recognized by the configure script.

——prefix=path
path is the top leve directory for the installation tree for the plugin. The plugin itself is installed in
the Tc1Libs subdirectory of this tree and has the name 1ibrootfilterformat.so
-—with-tcl-header-dir=path
The configure script searches for tcl.h in the most likely places. If it reports it is not able to find it,
you can tell configure where it actually lives by supplying the path parameter to this option.
—-—-with-spectcl-home=path

The plugin must link to the SpecTcl libraries. By default, these are assumed to be located in the
same directory tree as the one specified by the ——prefix option. If, however you choose to install
the plugin elsewhere, you must specify this option and path to be the path to the top level directory
of the SpecTcl installation.

—-—-with-rootsys=path

The plugin must also link to the Root libraries. These libraries cannot be automatically located; ther
is a wide variation in where they are installed from system to system. Specify this option with the
path argument specifying the value you would specify for the ROOTSYS environment variable when
using Root.

Example 2-1. Building at the NSCL
./configure —--prefix=/usr/opt/spectcl/3.2 —--with-rootsys=/opt/etch/root/root5.16

make install

Chapter 3. Usage

This chapter describes how to use the plugin. Specifically:

+ How to load the plugin
» Some background on SpecTcl filters is provided
« How to specify that an filter should be written in root ntuple format.

« What the root ntuple file contains.

3.1. Loading the plugin

The Tcl load command loads plugin libraries. You must specify the path to the plugin library completely.
If the plugin has been installed in the SpecTcl installation, you can use the SpecTclHome variable to
shorten the path.

The plugin will add a format selection to the SpecTecl filter -format command. The following dialog
loads the plugin from the SpecTcl installation directory tree and ensures that it has installed correctly.

Example 3-1. Loading the plugin

% load $SpecTclHome/TclLibs/librootfilterformat.so ©
$ filter (2]
Usage:

filter [-new] filtername gatename {parl par2 ...}

filter -delete filtername

filter -enable filtername

filter -disable filtername

filter -regate filtername gatename
filter -file filename filtername
filter -list ?glob-pattern?

filter —-format filtername format
filter creates pre-sorted event files
filter formats are:

xdr - NSCL XDR system independent filter file format

rootntuple - Root file containing an ntuple named spectcl. (3]

© This loads the plugin library assuming it was installed in SpecTcl’s installation. The Tcl variable
SpecTclHome is set by SpecTcl’s initialization to be the path to its installation.

Chapter 3. Usage

® The simplest way to check that the filter loaded correctly is to issue an invalid filter command. Like
most SpecTcl commands, filter will then provide usage information. The filter command’s usage
text dynamically generates the list of supported output formats from the list of available formats.

® The rootntuple format is the filter output format that is added by the plugin. Its presence in the
list of available formats indicates the plugin successfully loaded.

3.2. SpecTcl Filters

To use the plugin you need to understand SpecTcl filters. A SpecTcl filter cuts the data in two directions:

1. Only events that satisfy a filter’s gate are allowed through the filter and written to the filter output
file.

2. Only the specified subset of SpecTcl parameters are written to the filter output file for events that
satisfy the gate.

In other words, a filter can produce a subset of parameters from a subset of events.

To use a filter you must therefore:
1. Create a gate that will select the events that are written to the output file.
2. Use the filter -new command to create a filter, specifying its name, gate and list of parameters.
3. Specity the file to which filter data will be written via the filter -file command.

4. Enable the filter to allow it to write data to file via filter -enable and disable the filter when done
writing to a file via filter -disable

3.3. Specifying filters to output root ntuple files.

SpecTecl 3.2 introduced a new subcommand to the filter command filter -format, as well as an extensible
filter output format subsystem. The original filter file format is the default format and is now called xdr
format. The root plugin extends the set of output formats by adding the rootntuple file format.

A filter’s output format can be set whenever it is not enabled. The filter -format command is used to set
the format of the next filter file written.

The example below shows the command line based creation of a filter named root, setting it to write in
root ntuple format, selecting an output file and enabling the filter to write data.

Example 3-2. Creating a root n-tuple output filter.

filter root filtergate [list event.raw.00 event.raw.0l event.raw.02]

Chapter 3. Usage

filter —-format root rootntuple
filter -file spectcl.ntuple root
filter -enable root

If you are creating the filter with the folder GUI, use the filter wizard as you normally do, however create
the filter in the disabled state. Once created you can use the filter -format command to set the filter
format to rootntuple, and then use the folder GUI to subsequently enable the filter.

The Appendix shows how to extend the folder Gui so that you can select the filter format for any
disabled filter using that GUI.

3.4. Contents of a root ntuple filter.

So you have a filter file in root ntuple format. In order to analyze this file with root you need to know
what it contains. This section describes that.

A SpecTecl Root filter file contains a single n-tuple named spectcl. The n-tuple contains all events
SpecTcl analyzed to satisfy the filter gate while the filer was enabled to write to this file.

The n-tuple parameter names are the same as the names of the SpecTcl parameters that were selected for
the filter. In the event a parameter was not valid for an event, its slot is filled with a silent ’'Not a Number’
or NaN as they are called. These ’values’ are floating point values that will not be histogrammed, and can
be deteced via the function isnan or fpclassify.

Appendix A. Sample GUI extensions to specify
filter output format.

This section provides a Tcl/Tk script that adds functionality to the folder GUI that allows you to set the
format of filter files from amongst the formats known to SpecTcl at the time. The code is provided in the
filter tarball. This code is sample code and intended for instructional purposes. You may use it freely
under the Gnu Public License, but it should not be considered as NSCL supported software.

The entire gui is part of the distribution tarball, and is the file selectFilterFormat.tcl. We are
going to present this file a bit at a time, rather than just posting a large-ish chunk of code. The script
relies on the snit Tcl package that is part of the tcllib. snit is an object oriented extension to Tcl that also
supports the creation of megawidgets. A megawidget is a collection of simple widgets that operate to a
client script as if they were an ordinary Tk widget.

The first chunk I’d like to present is the initialization. Assuming that we’ve created a widget
filterFormat that will display the filters and let you set their formats, the following code adds a menu
item to the folder GUI’s Filter which pops up that widget:

Figure A-1. Adding a menu entry to the Filter menu

proc filterFormatDialog {} { (1)
set name .filterformatdialog
if {![winfo exists S$name]} { 2]
filterFormat $name (3]

}

Add the dialog to the filter menu:

.topmenu.filter add command -label {Filter Format...} \ (4]
—command [list filterFormatDialog]

O The filterFormatDialog proc will be responsible for creating the dialog in response to the
user’s menu invocation.

® The widget should only be created if it does not yet exist. winfo exists widgetname returns a
boolean true if widgetname already exists.

® This code actually creates the widget.

® This line adds a menu item labeled Filter Format. .. to the filter menu, which is named
.topmenu. filter. When invoked, the filterFormatDialog proc is called to actually create the
dialog.

Appendix A. Sample GUI extensions to specify filter output format.

Now I'd like to walk through the process of creating the widget. There are three code snippets we need to
look at. The first is a utility function that produces a list of the filters that are not enabled. This is used to
create the list of filters that can have their format set. The second snippet is used to list the set of formats
that are available. This is used both to provide some documentation of the available formats on the dialog
as well as to stock a menu of possible formats for each filter. Finally, we want to see the construction of
the megawidget.

The proc below inactiveFilters lists the filters that are not enabled. This is done by obtaining a list
of the filter descriptions and building a return list of the filters whose state is disabled. This proc is a
proc local to the filterFormat snit::widget.

Figure A-2. Getting a list of disabled filters

snit widget:: filterFormat {

proc inactiveFilters {} {

set filters [filter -list] (1)
set result [list]
foreach filter S$filters { (2]

if {[lindex $filter 4] eq "disabled"} { ©
lappend result $filter

}
}

return Sresult (4)

}

© The list filter descriptions is captured in the filters variable.

® Iterate over the filters in the list. The variable £i1ter will contain a single filter description. A filter
description may look like this:

{afilter test testing.flt {event.raw.00 event.sum event.raw.03} disabled xdr}

A list that contains in order, the filter name, the gate, the output filename, the list of parameters to be
written to the filter, the state of the filter (enabled or disabled), and the current filter format.

® The body of this if is executed if the filter is disabled, and adds the filter description as a list element
in result.

® The (possibly empty) list of disabled filters is returned.

The proc filterFormatList obtains the the list of filter formats and their descriptions. It does this by
processing the output of filter -help, which shown below:

Appendix A. Sample GUI extensions to specify filter output format.

Figure A-3. Filter help text

Usage:

filter [-new] filtername gatename {parl par2 ...}
filter -delete filtername

filter -enable filtername

filter -disable filtername

filter -regate filtername gatename

filter -file filename filtername

filter -list ?glob-pattern?

filter -format filtername format

filter creates pre-sorted event files

filter formats are: (1]
xdr - NSCL XDR system independent filter file format @

© This line is the delimeter between help text and the list of known filter formats.

® This is a sample format description. I make use of the fact that the — character separates the filter
format keyword from its description.
Here’s the code that decodes this text:
Figure A-4. Obtaining a list of known filter formats
snit::widget filterFormat {
proc filterFormatList {} {
Our only handle on this is to anlyze the help text.

The lines after the line that reads
"filter formats are:"

H= o %

are the descriptions.. with keyword - description.
catch {filter -help} helpText (1,

set helpText [split ShelpText "\n"] @
set linenum 0
foreach line S$helpText {
if {[string trim $line] eq "filter formats are:"} { ©
break
}
incr linenum
}
incr linenum; # line number of first format.
set descriptions [lrange S$helpText $linenum end] (4
set result [list]
foreach line $descriptions {
set format [split $1line -]

}

Appendix A. Sample GUI extensions to specify filter output format.

set key [string trim [lindex S$format 0]] (5,
set descr [string trim [lindex $format 1]]

lappend result [list S$key $descr]

return S$result

Since there’s not actually a filter -help command, and we are relying on filter to give us usage text
on errors, the command is issued in a catch command to allow the script to continue executing, and
to capture the error text from the command in helpText

The help text lines are split into a list, one line per list element.

The point of this loop is to figure out which line has the text just before the format list. In the end,
linenum will be set to the number of the line that is the first format description line.

This Irange command reduces the set of lines to just the format description lines.

Each format description is split at the — and the format keyword and description are stored as a list
in the final result list.

Now let’s look at the code that builds the dialog. The dialog will be made up of a bunch of labels laid out
using the grid command. The top set of labels will list the filters. The filter format will be clickable to
pop up a menu of formats. The bottom set of labels will just be a reminder of the meanings of each
format keyword.

Figure A-5. Laying out the widget

snit::widget filterFormat ({ (1)
hulltype toplevel (2
constructor args { (3]

List the Filters (4]

label Swin.filtertitle -text {Inactive Filters:}
grid S$Swin.filtertitle -

label $win.filtername —-text Name
label $win.filtergate —-text Gate
label $win.filterfile —-text File
label $win.filterfmt -text Format

Appendix A. Sample GUI extensions to specify filter output format.
grid S$Swin.filtername Swin.filtergate $win.filterfile Swin.filterfmt -sticky w
set fnum O

foreach filter [inactiveFilters] {
set name [lindex S$filter 0]
set gate [lindex S$filter 1
set file [lindex S$filter
set fmt [lindex S$filter

label $win.name$fnum -text $name

label Swin.gate$fnum —-text Sgate (5]
label $win.fileSfnum -text $file

label $win.fmt$fnum -text $fmt

bind $win.fmtSfnum <Button-1Sgt; \ (6]
[mymethod selectFormat $name S$win.fmtS$fnum %X %Y]

grid S$win.name$fnum $win.gate$fnum S$win.file$fnum Swin.fmt$Sfnum -sticky w

incr fnum

List the known filter formats:

set formats [filterFormatList]

label $win.formats -text {Key of filter formats: }
grid S$win.formats -

foreach format $formats {
set keyword [lindex S$format 0]
set descr [lindex Sformat 1]
label $win.${keyword}lkey -text S$keyword
label $win.${keyword}descr -text S$descr (7]
grid S$win.${keyword}lkey $win.${keyword}ldescr -sticky w

}
Method to dismiss:

button $win.dismiss -text {Dismiss} -command [list destroy $self]

grid S$win.dismiss

}

© The snit::widget command creates a megawidget class. The name of the class, filterFormat is
the widget name command used to create widgets of this type.

10

Appendix A. Sample GUI extensions to specify filter output format.

Snit megawidgets live in container widgets called hulls. The default type of hull widget is a frame.
Since our widget will be a dialog, we want to be laid out directly in a toplevel. The hulltype
command determines the type of widget used to contain the megawidget.

The constructor method of a snit widget is invoked when the widget is created. Usually (and this is
no exception), the constructor creates the widgets that make up the megawidget and lays them out in
the hull.

The next section of code provides titles for the list of inactive filters, and lays them out using the
grid geometry manager.

Having used inactiveFilters already shown the descriptions are broken down into their parts, and
labels built for each part.

The bind command here ensures that if the user clicks the left mouse button when the pointer is
over the format type, the proc selectFormat is called, which brings up the menu of format choices.
sx and %Y are the screen coordinates of the pointer which provide a hint about where to pop up the
menu. The other parameters are the name of the filter, and the name of the label widget that shows

the current format. Both will be affected by changes in the format.

©® This section of code produces a list of the supproted formats and their descdriptive text as label

widgets.

When constructed, the final dialog might look something like this:

Figure A-6. The filter format dialog

ad filterformatdialog

Inactive Filters:

Name Gate File Format

afilter test testing.flit zdr
Key of filter formats:

Hilr N3CL =DR system independent filter file format

rootntuple Root file containing an ntuple named spectcl.

Dismiss

ofx]

The next chunk of code to look at is the method that responds to the mouse click on the format of a filter.
The intent is for that to bring up a menu of radiobutton menu entries the user can select the new format

type from.

Figure A-7. Generating the format menu

method selectFormat {filter label x y} { (1)

set name $win.filterformatmenu
destroy S$name (2]

11

Appendix A. Sample GUI extensions to specify filter output format.

set formats [filterFormatList]
construct the menu:

menu $name
$Sname add command -label $filter —-command "" ©
$Sname add separator
foreach format S$formats {
set fname [lindex S$format 0]
Sname add radio -label $fname \
—-variable ::${selfns}::format \ @
-value S$fname \
—command [mymethod formatSelected $filter $fname $name $label]
}
tk_popup Sname $x Sy (5
}

©® The selectFormat proc takes as parameters the name of the filter, the label widget and the screen
coordinates of the mouse at the time the button was clicked.

® While it is an error to create an existing widget, it is not an error to destroy one that does not already
exist. If the menu is already posted (e.g. you click on first one filter’s format and then on a different
filter’s format without choosing a filter format for the first filter), it will be destroyed prior to making
this new menu.

® The name of the filter is placed at the top of the menu as a command that does nothing. The name of
the filter is separated from the radio buttons by a horizontal line separator.

® For each known format type, a radio button is added. The method formatSelected will be called
in response to the selection, and is passed the filter name, the format name, the menu name and the
name of the label widget associated with the format of the filter.

© Pops up the menu at or near the mouse position.

We now have one last bit of code to look at. The format Selected method is called when one of the
formats is chose from the popup menu:

Figure A-8. formatSelected - processing menu selections

method formatSelected {filtername formatname menuwidget labelwidget} { @
filter -format $filtername $formatname
$labelwidget config —-text S$formatname
destroy S$menuwidget

}

12

Appendix A. Sample GUI extensions to specify filter output format.

© This method is relatively straightforward once you know what it must do and what the method
parameters are. Method parameters are: The filter name £iltername, formatname the format
keyword selected from the popup menu. menuwidget the name of the popup menu widget.
labelwidget the name of the label widget that indicates the current format for the £iltername
filter.

The method must set the new format for the filter, set the new text indicating the current format for
the filter, and finally destroy the menu so it no longer is visible.

13

	SpecTcl Root ntuple plugin
	Table of Contents
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Installation
	Chapter 3. Usage
	3.1. Loading the plugin
	3.2. SpecTcl Filters
	3.3. Specifying filters to output root ntuple files.
	3.4. Contents of a root ntuple filter.

	Appendix A. Sample GUI extensions to specify filter output format.

