
NSCL Epics support software

Ron Fox

NSCL Epics support software
by Ron Fox

Revision History

Revision 1.0 March 28, 2007 Revised by: RF
Original Release

Table of Contents
I. NSCL Epics support for Tcl/Tk (1tcl) ..v

NSCL Epics support...6
epics tcl package..8
BCM Meter widget..14
epicsButton...16
epicsCommandButton..18
Epics enumerated control...19
epicsGraph...20
Epics Label Widget..34
epicsLabelWithUnits..35
epicsLed...35
epicsMeter..36
epicsPullDown...37
epicsStripChart...40
typeNGo bound to epics...63
epicsspinbox...64
Vertical meter widget...65
LED Widget...67
typeNGo compound widget...68

iii

List of Examples
1. Setting TCLLIBPATH to /usr/opt/epicstcl/TclLibs...7
2. Adding /usr/opt/epicstcl/TclLibs to auto_path in a Tcl Script: ...8
1. Linking an epics channel to a Tcl variable..11
2. Selecting the LinuxThreads thread library to prevent hangs...12
1. Monitoring Z001F-C with a BCM Meter..15
1. Using a button pair to turn on/off D125DV...18

iv

I. NSCL Epics support for Tcl/Tk (1tcl)

NSCL Epics support

Name
Intro — Overview of Epics support for Tcl/Tk at the NSCL

DESCRIPTION

NSCL has developed base support for epics access from withinTk programs or Tcl programs that are
based around the Tcl event loop. The base support consists ofa package calledepics. You can use this
package to directly access EPICS channels. In many cases, however, when building pure control panel
applications, you will be able to accomplish your objectives by writing your application using the NSCL
epics widget set.

NSCL has developed several Tcl/Tk widgets that understand how to directly interface with the EPICS
control system. these widgets are built to directly understand EPICS channels, record fields and how to
display them.

The Widget set consists of the following:

epicsBCMMeter

A meter with range controls that knows how to display NSCL Beam Current meters and control
their ranges. This widget requires an EPICS record of a specific subset of types.

epicsButton

A pushbutton that is connected to an epics field. This normally is used to control binary I/O records.

epicsEnumeratedControl

Controls an epics field that can have a value from a set of discrete pre-defined values.

epicsGraph.xml

Creates 2-d plots of epics channels vs. each other.

epicsLabel.

Displays the value of an epics record field in a Tk label widget.

epicsLabelWithUnits

Displays the value of an epics record primary field in a Tk label widget along with the value of the
record’s engineering unit’s field.

epicsLed

Displays an indicator which is lit when the epics field is nonzero and not when it isn’t the on and off
colors of the LED can be configured.

6

NSCL Epics support for Tcl/Tk (1tcl)

epicsMeter

Displays the value of an arbitrary EPICS record field in a meter.

epicsStripChart

Wraps the very flexible BLT Stripchart widget in some code thatallows it to produce strip charts of
the time evolution of an arbitrary number of epics fields.

epicsTypeNGo

Provides a simple type-in entry field that allows users to control the value of an arbitrary epics field.
New values are comitted by pressing a button.

epicsspinbox

Provides a spinbox that can control an arbitrary EPICS record field.

Getting started

The NSCL epics software is made up of several packages. A baseepics package provides raw support to
the channel access layer. Each widget provides a separate package as well. In Tcl, packages are loaded
using the:

package require package-name

command.

Thepackage requiresearches a list of library directories for matching packages. In general it will be
necessary to add the directory in which the epics packages are installed to this list of directories. This can
be done either by setting theTCLLIBPATH environment variable prior to running your scripts, or by
adding that directory to the Tclauto_path variable in your script.

I cannot anticipate where the NSCL epics software will be installed on all systems, however when I (Ron
Fox) install this package, I install it in/usr/opt/epicstcl which will put the packages in
/usr/opt/epicstcl/TclLibs.

Example 1. Setting TCLLIBPATH to /usr/opt/epicstcl/TclLi bs

sh, bash shells:

export TCLLIBPATH=/usr/opt/epicstcl/TclLibs

csh:
setenv TCLLIBPATH /usr/opt/epicstcl/TclLibs

7

NSCL Epics support for Tcl/Tk (1tcl)

Example 2. Adding /usr/opt/epicstcl/TclLibs to auto_pathin a Tcl Script:

lappend auto_path /usr/opt/epicstcl/TclLibs

On windows, no environment variables are needed. Simply

1. If not already installed, install the NCSAPPS package on your PC. This makes the EPICS channel
access layer required by the epics package available.

2. Download and install the ActiveTcl package available at no charge from http://www.activestate.com
Install this package in its default location.

3. Download the epics installer from the NSCL anonymous FTP site. At the time this is being written it
is: ftp://ftp.nscl.msu.edu/pub/epicstcl13-001.exe

4. Run the epics installer you downloaded.

epics tcl package

Name
epics — Loadable package to access epics.

Synopsis

package require epics

epicschannelname

name get ?count?

name setvalue-list ?data-type?

name updatetime

name delete

8

NSCL Epics support for Tcl/Tk (1tcl)

name link tclVariableName

name unlink tclVariableName

name listlinks ?pattern?

name values

name size

SUMMARY

The epics package is a loadable package that supplies accessto an epics control system. Loading epics
will also load the shared libraries required for epics, so these must be installed on the system on which
this package is being used.

Theepicschannelcommand expresses an interest in a specific named channel, ordatabase field. Once
specified, this becomes a new command. The new command is an ensemble with several subcommands.
These subcommands allow one to manipulate and inquire aboutthe channel. When interest is declared
epics events are requested to maintain the state of a channel. Epics events can only be processed,
however, by entering the Tcl event loop. Either by running wish, or by doing avwait in a pure Tcl
interpreter.

It is perfectly possible and acceptable to do something like:

epicschannel aaa
...
epicschannel aaa

Rather than creating a second, duplicate command, the epicspackage maintains a reference count for
each distinct epics channel created. The firstepicschannelin the example above creates the new
command, with a reference count of 1. The second increments the reference count of the existing aaa
command to 2.

Having done the sequence of commands shown above;

aaa delete; # Decrements the refcount to 1 aaa still exists.
...
aaa delete; # refcount becomes 0 so aaa is deleted.

9

NSCL Epics support for Tcl/Tk (1tcl)

Hopefully this reference count scheme will make large programs easier to build, as sections will not have
to worry about other sections yanking existing commands outfrom underneath them.

The subcommands for an epics channel are:

get?size?

Retrieves the value of the channel or field. Note that if a connection event has not yet been recieved
and processed, this will return an error. This can happen either if the channel is not an epics channel
or if the event loop has not yet been entered enough times to allow the event to be seen. Note that
epics events are processed prior to executing this command so it is possible for this command to fail
first and then work a few tries later.

If the channel is an array, the entire array is returned as a Tcl list unless the optionalsize parameter
is provided. In that case, the firstsize elements are returned or all elements depending on which is
fewer.

setvalue-list ?data-type?

Sets the value of the channel or database field (if changeable) to value-list. All the remarks
about thesetsubcommand apply here too.

If the channel is an array,value-list is a list of values that will be used to set the first elements of
the array. The number of elements set is the smaller of the size of the list and the number of array
elements managed by the channel.

If the optionaldata-type keyword is present, it provides the data type to be used to do the set. The
data type can be any ofstring (default),real or int. It is an error forvalue-list to contain a
value that cannot be converted to the type specified.

updatetime

Returns the time of the last update received for the channel.The time is returned as an integer
suitable for use in the Tclclock command. This allows the result to be formatted as a time and date,
or used arithmetically to calculate time diferences in seconds.

delete

Deletes the command and attachment to an epics channel. All resources associated with the
command are also destroyed.

link varname

Links a variable to the epics proces variable (channel). Changes to the channel get reflected into the
linked variable. Changes to the varible from Tcl scripts aretraced and result in attempts to modify
the epics channel.

10

NSCL Epics support for Tcl/Tk (1tcl)

Additional link s are allowed and create a 1 to many link between an epics channel and several Tcl
Variables.

At present, only the first element of array process variablesis linked to the Tcl variable. Array
process variables must be handled via thegetandsetsub-commands.

unlink varname

Removes the link between the epics channel and the Tcl variable varname. It is an error to attempt
to unlink from a variable that is not linked.

name listlinks ?pattern?

Lists the set of links that match the optionalpattern. If no pattern is supplied, it defaults to *.

name values

Lists the set of values that the process variable can legallyaccept. If this list is empty, the channel is
either not connected or has not received its first value and therefore does not yet know its list of
enumerated values. If the list size is one, this will be a textual encoding of the data types acceptable
by the channel e.g.float, string or int. If the list size is greater than 1, this is a list of allowed
values for the enumerated variable.

name size

Returns the number of elements inname. Epics process variables can be thought of as arrays, where
a scalar value is just the special case of an array of size 1.

EXAMPLES

The code below creates a label widget that follows the value of the epics channel SOMECHANNEL:

Example 1. Linking an epics channel to a Tcl variable

package require epics
epicschannel SOMECHANNEL
SOMECHANNEL link SOMECHANNELvar
label .l -textvariable SOMECHANNELvar
pack .l

Note that this can be done much more simply using the epics Tclwidgets. Those widgets understand
how to display epics channels directly e.g.

package require epicsLabelWithUnits

11

NSCL Epics support for Tcl/Tk (1tcl)

controlwidget::epicsLabelWithUnits .l -channel SOMECHANNEL
pack .l

Creates a GUI that displays SOMECHANNEL with its engineering units, updating as the value updates
in Epics.

The example below finds out how many elements are in the channel K5RGA_HSCAN_DAT

package require epics
epicschannel K5RGA_HSCAN_DAT
...
set elements [K5RGA_HSCAN_DAT size]

The following example, takes the channel K5RGA_HSCAN_DAT,already assumed to be connected, and
clears its second array element. Note that the elements of Tcl lists number from 0.

set data [K5RGA_HSCAN_DAT get 2]; # get elements 0,1.
set data [lreplace $data 1 1 0]; # Replace second item with 0.
K5RGA_HSCAN_DAT set $data; # Set elements 0,1

OPEN ISSUES

On some linux systems a broken implementation of the Linux Native Posix Thread Library (NPTL)
causes the tcl shell extended with the epics package to deadlock (hang). This is a known issue with
Linux. If this is observed then prior to starting tcl/wish applications, select the LinuxThreads
implementation of the threading library by (bash):

Example 2. Selecting the LinuxThreads thread library to prevent hangs

export LD_ASSUME_KERNEL=2.4.19

For the C shell:
setenv LD_ASSUME_KERNEL 2.4.19

12

NSCL Epics support for Tcl/Tk (1tcl)

Issues with enumerated variable types

Enumerated types have an interesting interaction with array sets. This is not an defect in the software
package, it is simply a property of Tcl that interacts with some enumerated types, and the ability to set
enumerated types by string values. Consider an enumerated type whose string values have spaces e.g one
legitimate value is"a b". Let’s call this process variablefunky1 (we will have afunky2 to show
another interesting issue with enumerated process variables. Suppose that this value"a b" corresponds
to enumerated index 0. Consider the following two chunks of Tcl (funky1 is already assumed to be
established as a channel).

funky1 set [lindex [funky1 values] 0]
funky1 set "a b"

Both of these provide the parametera b to thesetsubcommand. this looks like a two element list, but
funky1 is only a single element array, so the valuea is set which may not be legal, in which case epics
will throw an error or, even worse, may correspond to anotherlegal value for the enumerated type.

There are two potential solutions to this problem. First, ensure that a single element list is received by the
setcommand, second, use indices only:

funky1 set [list [lindex [funky1 values] 0]]
funky1 set [lsearch [funky1 values] "a "b] int

The list command will add an additional level of quoting if necessaryto ensure that each parameter it
recieves is a properly quoted list element. Thelsearchcommand will return the index of"a b" in the
list of allowed values forfunky1. This is an integer that represents the enumerated index value. Theint
at the back end of the command forces thesetto be done as an integer data type rather than a string. See
the discussion below aboutpathalogical enumerated process variables

For enumerated process variables there can also be an interesting pathology. Consider a process variable
funky2 for which thevaluessubcommand returns the list:5 4 3 2 1 0. It is not clear what the
following does, or even what the intent is:

funky2 set 2

Is the 2 the string 2 (which has enumerated index 3), or is it the index 2 which has the string value 3?
Process variable designers should avoid such pathologies.If, however, a pathology like this does exist,
that would imply that the only unambiguous way to set enumerated process variables is by index. The
following is unambiguous:

funky2 set 2 int

13

NSCL Epics support for Tcl/Tk (1tcl)

This forces an integer set of the process variable which selects the textual value 3. Note that this
pathology may well be hidden from the programmer, who is justusing thevaluescommand to get the
list of legal values and selecting from amongst them. The above discussion should hopefully lead you to
conclude that for enumerated epics variable types, you should probably only use the textual
representation, relying on the index to set the value and ensuring that the index is treated as an index by
using theint data type parameter on thesetsub command to ensure that pathalogically labelled
variables are not a problem. e.g:

someenum set [lindex [someenum values] $index]; # Avoid this!!!
someenum set $index int; # use this instead.

There is a further subtlety. For linked variables, modifications of the variable triggers a set instring form.
This avoids the vector/list issue, but steps right into the issue with pathological value sets. Therefore
once more enumerated process variables, following the planof using the text (variable) for display only,
but use thesomeenum setsome-integer int form for setting the variable is the best policy.

BCM Meter widget

Name
epicsBCMMeter — Provide a widget for displaying and controlling beam current monitors.

Synopsis

package require epicsBCMMeter

controlwidget::epicsBCMMeter path ?options...?

OPTIONS

-meterheightdimension

Requests a specific height for the meter part of the widget. This height can be specified using any of
the legal Tk dimension specifications. The value is passed tothe meter widget’s-height option
without interpretation.

14

NSCL Epics support for Tcl/Tk (1tcl)

-meterwidth dimension

Requests a specific width for the meter part of the widget. This height can be specified using any of
the legal Tk dimension specifications. The value is passed tothe meter widget’s-width option
without interpretation.

-channelname

Specifies thename of the epics channel to be monitored by this meter. Note that the channel must
have an MRNG, MSRN, and MRRN field in its database.

Note that the meter ranges are not exposed to the API. The widget maintains appropriate ranges and ticks
depending on the value of the range of the underlying device.

The-channeloption is required at creation time and cannot be changed later.

METHODS

get

Returns the current value of the meter’s channel.

getRange

Returns the value of the meter range. For example, 1e-06 means the meter runs between -1e06 and
1e06..

incRange

Increments the range of the monitor and meter. This will usually make the meter more sensitive.

decRange

Decrements the range of the monitor and meter. This will usually make the meter less sensitive.

EXAMPLES

The example below displays a BCM Meter that monitors the current onZ001F-C

Example 1. Monitoring Z001F-C with a BCM Meter

package require epicsBCMMeter

controlwidget::epicsBCMMeter .meter -channel Z001F-C
pack .meter

15

NSCL Epics support for Tcl/Tk (1tcl)

SEE ALSO

meter

epicsButton

Name
epicsButton — Provide a control for on/off values in epics.

Synopsis

package require epicsButton

controlwidget::epicsButton path ?options...?

DESCRIPTION

This widget provides a mechanism for controlling binary output style devices with the ability to monitor
an optional associated input status channel. Two control styles are supported, a single button and a pair
of buttons. The widget can also be labeled.

OPTIONS

-channelchannel-name

Specifies the name of the channel that will be controlled by the pushbutton widget. Note that unless
the-statechanneloption is specified, this channel will also be used to reflect the state of the device.
This option must be specified when the button is created.

16

NSCL Epics support for Tcl/Tk (1tcl)

-statechannelchannel-name

Specifies the name of the channel that reflects the state of thedevice. The channel state is assumed
to be ’on’ if this channel is booleantrue and off otherwise. If this option is not specified when the
button is constructed, the state will be read from the channel specified by-channel.

-onvaluevalue

Specifies the value to write to the channel to turn the device to theon state. If not specified, this
defaults to 1.

-offvalue value

Specifies the value to write to the channel to turn the device to theoff state. If not specified, this
defaults to 0.

-onlabelstring

Specifies the string to use to label the button that turns the device on. If a single button
representation has been selected, this string will label the button when the device is off (the button
turns the device on), and the button will display the off color. In a double button representation, this
label will label the left button, which turns the device on.

-offlabel string

Specifies a string to use to label the button that turns the device off. If a single button representation
is selected, this string will label the button when the device is on (the button turns the device off in
that case), and the button will display the on color. In a double button representation, this label will
label the right button which turns the device off.

-oncolor color

Specifies the color to use to indicate the device is on. In a single button case, the color is the
background color of the single button, in a double button case, this color is the background color of
the button that is enabled (when the device is on, the on button is disabled).

-offcolor color

Specifies the color to use to indicate the device is off. See the discussion of-oncolor for a hint about
how this works.

-modality keyword

Selects the type of button presentation desired. The keyword can have the valuesingle or double.
Selecting whether a single button or a pair of buttons will beused to control this device.

-showlabelboolean

If true (default) a channel name label is placed above the button(s). If false, no channel label is
displayed.

17

NSCL Epics support for Tcl/Tk (1tcl)

EXAMPLES

The example below (to the best of my knowledge), creates a pair of buttons that can turn the D125DV
power supply on and off:

Example 1. Using a button pair to turn on/off D125DV

package require epicsButton
controlwidget::epicsButton .d125dvonoff -channel D125DV.ONL -statechannel D125DV.SONL \

-modality double \
-onlabel {Turn On} \
-offlabel {Turn Off} \
-oncolor green -offcolor red

pack .d125dvonoff

epicsCommandButton

Name
epicsCommandButton — Button that sends a value to a channel

Synopsis

package require epicsButton

controlwidget::epicsCommandButtonpath ?options?...

DESCRIPTION

TheepicsCommandButtonis wraps the Tk button widget so that clicking the button sends a specific
value to an associated epics process variable. The appearance defaults for the widget are the same as
ordinary Tk buttons, in contrast withepicsButtonwidgets.

18

NSCL Epics support for Tcl/Tk (1tcl)

OPTIONS

The epicsCommandButton inherits all options and methods from the Tk button widget. The-command
option is, however disabled to prevent interference with the epicsCommandButton’s use of this feature in
the underlying button.

-channelepicschannel

epicschannel is the channel controlled by this widget. This must be supplied when constructing
the widget and cannot be dynamically modified (attempts to doso are silently ignored).

-valuevalue

value is the value that will be written to the channel when the button is clicked. This defaults to an
empty string, and can be dynamically modified after the widget is created.

EXAMPLES

The example below creates a button that, when pressed sets the channelIGAI0 to zero.

package require epicsButton
controlwidget::epicsCommandButton .eb -channel IGAI0 -value 0 -text IGAI0=>0
pack .eb

Epics enumerated control

Name
epicsEnumeratedControl — Provide a control for epics channels with discrete enumerable
values.

Synopsis

package require epicsEnumeratedControl

controlwidget::epicsEnumeratedControlpath ?options...?

19

NSCL Epics support for Tcl/Tk (1tcl)

SUMMARY

TheepicsEnumeratedControlcommand provides a widget that allows you to monitor and control epics
channels that can take one of a list of possible settings values. The widget is based on a radioMatrix
widget, but the variable is bound to an epics channel.

OPTIONS

All of the options associated with aradioMatrix widget are accepted by theepicsEnumeratedControl
widget except the-variable option. In addition, the-channeloption can be provided to bind the matrix
to an epics channel.

METHODS

TheGet andSetmethods work as for the radioMatrix.

SEE ALSO

radioMatrix(1tcl)

epicsGraph

Name
epicsgraph — Wrap a BLT graph with code for plotting epics channels against each other.

Synopsis

package require epicsGraph
controlwidget::epicsStripChart name ?options?

name addseries sname x-channel y-channel interval ?options?

name removeseries sname

20

NSCL Epics support for Tcl/Tk (1tcl)

DESCRIPTION

This widget is a thin wrapping of the BLT Graph widget. The wrapping allows you to easily create
graphs of epics channel pairs (e.g. one channel on the x axis,one on the y axis). Any number of pairs of
channels can be plotted on the same widget if desired with line colors symbol shapes and line types
distinguishing between them.

OPTIONS

All options for the blt::graph widget are supported and passed to that widget without any interpretation.
See the summary (section blt::graph summary) below or alternatively:
http://man-wiki.net/index.php/N:blt_graph for a full description of that widget.

METHODS

All blt::graph widget methods are supported. See the summary (section blt::graph summary) below or
alternatively, http://man-wiki.net/index.php/N:blt_graph The blt::graph widget methods are passed
without any interpretation on to that widget.

In addition the following methods are also defined:

name addseriessname x-channel y-channel interval ?options?

Adds a data series to the graph. A data series consists of a blt::graph element that displayse the data
andchannnelPairHistory object to automatically maintain the element’s data.

sname is the name of the series to create. It must be unique and will also be used as the blt::graph
element name.

x-channel y-channel are the names of the EPICS process variables that will be the Xand Y
parameters of the data series respectively.

interval is the number of milliseconds between samples on the plot.

options are optional option value pairs that are passed as is to the blt::graph element add
command and can be used to configure the appearance of the dataseries e.g.

The command returns the name of the channel pair history object which can be saved and
manipulated.

21

NSCL Epics support for Tcl/Tk (1tcl)

name removeseries sname

Removes the seriessname from the graph and destroys the channel pair history object that was
created for it.

channelPairHistory objects

channelPairHistory objects are used to keep track of and manage the automatic update of data
series. While intended for use with the epicsGraph widget, you may also find them useful in your
applications. This section therefore summarizes the capabilities of thechannelPairHistory snit::type.

OPTIONS

-period

Specifies the milliseconds between data updates

-xchannel

Name of the x channel. When used with an epicsGraph to produce adata series, this parameter will
be on the x axis.

-ychanel

Name of the y channel. When used with an epicsGraph to produce adata series, this parameter will
be on the y axis.

-timebase

[clock seconds] at which the data series start. When the data are retrieved from the object, the times
associated with each data points are offsets relative to this time.

METHODS

clear

Clears the entire data series.

clearfirst n

Clears the firstn data points in the series.

keep n

Keeps only the firstn data points in a series. This restriction is enforced on eachupdate of the series.

names

The data series is maintained in a set of threeblt::vector objects. This returns the names of the
three vectors. The names are returned as a three element list. The first element of the list is the name

22

NSCL Epics support for Tcl/Tk (1tcl)

of the time vector. The second element of th elist is the name of the x parameter vector. The third
element of the list is the name of the y parameter vector.

get

Returns the data stored in the series. The data are returned as a list of data points. Each data point is
a three element list consisting of (in order), the time relative to the-timebase time, the x
parameter value at that time, and the y parameter value at that time.

blt::graph summary

See http://man-wiki.net/index.php/N:blt_graph for a full description of the blt::graph widget. This
section provides a summary of the more useful features of thewidget in an attempt to make this manpage
close to self contained for most uses of the widget.

The blt::graph widget is a graph that plots X-Y data. The graph widget can be thought of as having many
independently configurable components. Configuring each component can determine how the graph will
appear.

OPTIONS

-height measure

sets the requested height of the widget. This can be any validTk measurement. The default is 4i

-title text

Sets the title totext. If text is "", no title will be displayed.

-width measure

Specifies the requested width of the widget. The default is 5i.

COMPONENTS

The graph widget can be thought of as made up of several components. Each component can be
indepdendently configured and, in some cases several components of each type can be created. This
section summarizes the components and what they do. Subsequent sections will describe the most useful
options of the most used components.

axis

The graph has four standard axes (x, x2, y, and y2), but you cancreate and display any number of
axes. Axes control what region of data is displayed and how the data is scaled. Each axis consists of
the axis line, title, major and minor ticks, and tick labels.Tick labels display the value at each major
tick.

23

NSCL Epics support for Tcl/Tk (1tcl)

crosshairs

Cross hairs are used to position the mouse pointer relative to the X and Y coordinate axes. Two
perpendicular lines, intersecting at the current locationof the mouse, extend across the plotting area
to the coordinate axes.

element

An element represents a set of data points. Elements can be plotted with a symbol at each data point
and lines connecting the points. The appearance of the element, such as its symbol, line width, and
color is configurable. Data series of epics channels are implemented as elements.

grid

Extends the major and minor ticks of the X-axis and/or Y-axisacross the plotting area.

legend

The legend displays the name and symbol of each data element.The legend can be drawn in any
margin or in the plotting area.

marker

Markers are used annotate or highlight areas of the graph. For example, you could use a polygon
marker to fill an area under a curve, or a text marker to label a particular data point. Markers come
in various forms: text strings, bitmaps, connected line segments, images, polygons, or embedded
widgets.

pen

Pens define attributes (both symbol and line style) for elements. Data elements use pens to specify
how they should be drawn. A data element may use many pens at once. Here, the particular pen
used for a data point is determined from each element’s weight vector (see the element’s -weight
and -style options).

postscript

The widget can generate encapsulated PostScript output. This component has several options to
configure how the PostScript is generated.

axis

Four coordinate axes are automatically created: two X-coordinate axes (x and x2) and two Y-coordinate
axes (y, and y2). By default, the axis x is located in the bottom margin, y in the left margin, x2 in the top
margin, and y2 in the right margin.

An axis consists of the axis line, title, major and minor ticks, and tick labels. Major ticks are drawn at
uniform intervals along the axis. Each tick is labeled with its coordinate value. Minor ticks are drawn at
uniform intervals within major ticks.

24

NSCL Epics support for Tcl/Tk (1tcl)

The range of the axis controls what region of data is plotted.Data points outside the minimum and
maximum limits of the axis are not plotted. By default, the minimum and maximum limits are
determined from the data, but you can reset either limit.

You can have several axes. To create an axis, invoke the axis component and its create operation.

Create a new axis called "tempAxis"
.g axis create tempAxis

You map data elements to an axis using the element’s -mapy and-mapx configuration options. They
specify the coordinate axes an element is mapped onto.

Now map the tempAxis data to this axis.
.g element create "e1" -xdata $x -ydata $y -mapy tempAxis

Any number of axes can be displayed simultaneously. They aredrawn in the margins surrounding the
plotting area. The default axes x and y are drawn in the bottomand left margins. The axes x2 and y2 are
drawn in top and right margins. By default, only x and y are shown. Note that the axes can have different
scales.

To display a different axis or more than one axis, you invoke one of the following components: xaxis,
yaxis, x2axis, and y2axis. Each component has a use operation that designates the axis (or axes) to be
drawn in that corresponding margin: xaxis in the bottom, yaxis in the left, x2axis in the top, and y2axis in
the right.

Display the axis tempAxis in the left margin.
.g yaxis use tempAxis

The use operation takes a list of axis names as its last argument. This is the list of axes to be drawn in this
margin.

You can configure axes in many ways. The axis scale can be linear or logarithmic. The values along the
axis can either monotonically increase or decrease. If you need custom tick labels, you can specify a Tcl
procedure to format the label any way you wish. You can control how ticks are drawn, by changing the
major tick interval or the number of minor ticks. You can define non-uniform tick intervals, such as for
time-series plots.

25

NSCL Epics support for Tcl/Tk (1tcl)

Axis components are manipulated using an ensemble of widgets commands (methods) of the form:

pathName axis subcommand ...

The most useful of thesubcommands will be described below.

cgetaxisName option

Returns the current value of the option given by option for axisName. Option may be any option
described below for the axis configure operation.

configureaxisName option value

Sets a new value for a configuration option for the axisaxisName. option and value are described
in the ’most useful list of options’ below:

-color color

Sets the color of the axis and tick labels. The default is black.

-descending boolean

Indicates whether the values along the axis are monotonically increasing or decreasing. If
boolean is true, the axis values will be decreasing. The default is 0.

-logscale boolean

Indicates whether the scale of the axis is logarithmic or linear. If boolean is true, the axis is
logarithmic. The default scale is linear.

-majorticks majorlist

Specifies where to display major axis ticks. You can use this option to display ticks at
nonuniform intervals.majorlist is a list of axis coordinates designating the location of major
ticks. No minor ticks are drawn. IfmajorList is "", major ticks will be automatically
computed. The default is "".

-max value

Sets the maximum limit of axisName. Any data point greater than value is not displayed. If
value is "", the maximum limit is calculated using the largest data value. The default is "". Note
that this calculation is performed again as data elements change in time.

-min value

Sets the minimum limit of axisName. Any data point less than value is not displayed. If value
is "", the minimum limit is calculated using the smallest data value. The default is "".

-minorticks minorList

Specifies where to display minor axis ticks. You can use this option to display minor ticks at
non-uniform intervals.MinorList is a list of real values, ranging from 0.0 to 1.0, designating
the placement of a minor tick. No minor ticks are drawn if the -majortick option is also set. If
minorList is "", minor ticks will be automatically computed. The default is "".

26

NSCL Epics support for Tcl/Tk (1tcl)

-stepsize value

Specifies the interval between major axis ticks. If value isn’t a valid interval (must be less than
the axis range), the request is ignored and the step size is automatically calculated.

-subdivisions number

Indicates how many minor axis ticks are to be drawn. For example, if number is two, only one
minor tick is drawn. Ifnumber is one, no minor ticks are displayed. The default is 2.

-title text

Sets the title of the axis. Iftext is "", no axis title will be displayed.

createaxisName ?options...?

Creates a new axis by the nameaxisName. No axis by the same name can already exist.
?options...? are option value pairs described above under theconfigure subcommand.

deleteaxisName

Deletes the named axes. An axis is not really deleted until itis not longer in use, so it’s safe to
delete axes mapped to elements.

names?pattern?

Returns a list of axes matching zero or more patterns. If nopattern argument is give, the names of
all axes are returned.

element

An element is what we refer to as a data series. Elements are displayed as a set of X/Y points on the
surface of the graph, limited by the axes they are associatedwith. The points can be connected by lines
that have various line styles an doclors (see pen componentsas well).

When new data elements are created, they are automatically added to a list of displayed elements. The
display list controls what elements are drawn and in what order.

The following operations are the most useful ones availablefor elements. All are of the form:

pathName element subcommand ...

cgetelemNamme option

Returns the current value of the element configuration option given byoption. Option may be
any of the options described below for the element configure operation.

27

NSCL Epics support for Tcl/Tk (1tcl)

configureelemName ... ?option...

Queries or modifies the configuration options for elements. Several elements can be modified at the
same time. Ifoption isn’t specified, a list describing all the current options for elemName is
returned. If anoption is specified, but not its value, then a list describing the option option is
returned. If one or more option and value pairs are specified,then for each pair, the element option
option is set tovalue. The following options are are the most commonly used ones valid for
elements.

-color color

Sets the color of the traces connecting the data points.

-dashes dashlist

Sets the dash style of element line.DashList is a list of up to 11 numbers that alternately
represent the lengths of the dashes and gaps on the element line. Each number must be
between 1 and 255. IfdashList is "", the lines will be solid.

-label text

Sets the element’s label in the legend. If text is "", the element will have no entry in the legend.
The default label is the element’s name.

-pen penname

Set the pen to use for this element. For more information about pens, see the pen component
described later in this document.

-symbol symbol

Specifies the symbol for data points.Symbol can be eithersquare, circle, diamond, plus,
cross, splus, scross, triangle, "" (where no symbol is drawn), or a bitmap. Bitmaps are
specified as "source ?mask?", wheresource is the name of the bitmap, andmask is the
bitmap’s optional mask. The default iscircle.

existselemName

Returns 1 if an elementelemName currently exists and 0 otherwise.

element names?pattern?...

Returns the elements matching one or more pattern. If no pattern is given, the names of all elements
is returned.

grid

Grid lines extend from the major and minor ticks of each axis horizontally or vertically across the
plotting area. While there are many options and operations associated with grid lines, the most common
ones are:

28

NSCL Epics support for Tcl/Tk (1tcl)

grid on

Turns on the display the grid lines.

grid off

Turns off the display the grid lines.

legend

The legend displays a list of the data elements. Each entry consists of the element’s symbol and label.
The legend can appear in any margin (the default location is in the right margin). It can also be
positioned anywhere within the plotting area.

Legend operations are of the form:

pathName legend operation ...

The most frequently used legend operations are:

cgetoption

Returns the current value of a legend configuration option.Option may be any option described
below in the legend configure operation.

configure?option...?

Queries or modifies the configuration options for the legend.If option isn’t specified, a list
describing the current legend options forpathName is returned. Ifoption is specified, but not
value, then a list describingoption is returned. If one or more option and value pairs are
specified, then for each pair, the legend optionoption is set tovalue. The following options (and
others) are valid for the legend.

-hide boolean

Indicates whether the legend should be displayed. Ifboolean is true, the legend will not be
drawn. The default isno.

-position pos

Specifies where the legend is drawn. The-anchor option also affects where the legend is
positioned. Ifpos is left, left, top, or bottom, the legend is drawn in the specified margin.
If pos is plotarea, then the legend is drawn inside the plotting area at a particular anchor. If
pos is in the form "@x,y", where x and y are the window coordinates, the legend is drawn in
the plotting area at the specified coordinates. The default is right.

29

NSCL Epics support for Tcl/Tk (1tcl)

Pen

Pens define attributes (both symbol and line style) for elements. Pens mirror the configuration options of
data elements that pertain to how symbols and lines are drawn. Data elements use pens to determine how
they are drawn. A data element may use several pens at once. Inthis case, the pen used for a particular
data point is determined from each element’s weight vector (see the element’s -weight and -style
options).

One pen, called activeLine, is automatically created. It’sused as the default active pen for elements. So
you can change the active attributes for all elements by simply reconfiguring this pen.

.g pen configure "activeLine" -color green

You can create and use several pens. To create a pen, invoke the pen component and its create operation.

.g pen create myPen

You map pens to a data element using either the element’s -penor -activepen options.

.g element create "line1" -xdata $x -ydata $tempData \
-pen myPen

An element can use several pens at once. This is done by specifying the name of the pen in the element’s
style list (see the -styles option).

.g element configure "line1" -styles { myPen 2.0 3.0 }

This says that any data point with a weight between 2.0 and 3.0is to be drawn using the pen myPen. All
other points are drawn with the element’s default attributes.

The following operations are available for pen components,and are of the form:

pathName pen operation ...

30

NSCL Epics support for Tcl/Tk (1tcl)

Descriptions start with theoperation.

cgetpenName option

Returns the current value of the option given byoption for penName. Option may be any option
described below for the pen configure operation.

configurepenName ?penName... ?option...?

Queries or modifies the configuration options of penName. Several pens can be modified at once. If
option isn’t specified, a list describing the current options for penName is returned. Ifoption is
specified, but notvalue, then a list describingoption is returned. If one or more option and value
pairs are specified, then for each pair, the pen optionoption is set tovalue. The following options
are valid for pens.

-color color

Sets the color of the traces connecting the data points.

-dashes dashList

Sets the dash style of element line.DashList is a list of up to 11 numbers that alternately
represent the lengths of the dashes and gaps on the element line. Each number must be
between 1 and 255. IfdashList is "", the lines will be solid.

-symbol symbol

Specifies the symbol for data points. Symbol can be eithersquare, circle, diamond, plus,
cross, splus, scross, triangle, "" (where no symbol is drawn), or a bitmap. Bitmaps are
specified as "source ?mask?", wheresource is the name of the bitmap, andmask is the
bitmap’s optional mask. The default iscircle.

createpenName ?option value?...

Creates a new pen by the namepenName. No pen by the same name can already exist.Option and
value are described in above in the pen configure operation.

delete?penName?...

Deletes the named pens. A pen is not really deleted until it isnot longer in use, so it’s safe to delete
pens mapped to elements.

names?pattern?...

Returns a list of pens matching zero or more patterns. If no pattern argument is give, the names of
all pens are returned.

postscript

The graph can generate encapsulated PostScript output. There are several configuration options you can
specify to control how the plot will be generated. You can change the page dimensions and borders. The

31

NSCL Epics support for Tcl/Tk (1tcl)

plot itself can be scaled, centered, or rotated to landscape. The PostScript output can be written directly
to a file or returned through the interpreter.

Postscript operations all have the form:

pathName postscript operation ...

The following postscript operations are available.

cgetoption

Returns the current value of the postscript option given byoption. Option may be any option
described below for the postscriptconfigure operation.

configure?option value?...

Queries or modifies the configuration options for PostScriptgeneration. Ifoption isn’t specified, a
list describing the current postscript options forpathName is returned. Ifoption is specified, but
notvalue, then a list describingoption is returned. If one or more option and value pairs are
specified, then for each pair, the postscript optionoption is set tovalue. The following postscript
options are available.

-center boolean

Indicates whether the plot should be centered on the PostScript page. Ifboolean is false, the
plot will be placed in the upper left corner of the page. The default is 1 (true), which centers
the plot on the postscript page.

-colormode mode

Specifies how to output color information.Mode must be eithercolor (for full color output),
gray (convert all colors to their gray-scale equivalents) ormono (convert foreground colors to
black and background colors to white). The default mode is color.

-landscape boolean

If boolean is true, this specifies the printed area is to be rotated 90 degrees. In non-rotated
output the X-axis of the printed area runs along the short dimension of the page (“portrait
orientation); in rotated output the X-axis runs along the long dimension of the page
(“landscape orientation). Defaults to 0.

-maxpect boolean

Indicates to scale the plot so that it fills the PostScript page. The aspect ratio of the graph is
still retained. The default is 0.

output ?fileName? ?option value?...

Outputs a file of encapsulated PostScript. If afileName argument isn’t present, the command
returns the PostScript. If any option-value pairs are present, they set configuration options

32

NSCL Epics support for Tcl/Tk (1tcl)

controlling how the PostScript is generated. Option and value can be anything accepted by the
postscript configure operation above.

EXAMPLES

The following simple application prompts for two channels and then builds/displays a plot of the two
channels updated every 100ms. The plot will have axes that autorange, with a grid and axis titles that
reflect the channels plotted as well as a title that reflects the plot.

package require epicsGraph

Build the prompt for the channels:

frame .prompt
label .prompt.cxlbl -text {X Channel}
entry .prompt.cx
label .prompt.cylbl -text {Y Channel}
entry .prompt.cy

button .prompt.ok -text Ok -command createPlot

grid .prompt.cxlbl .prompt.cx
grid .prompt.cylbl .prompt.cy
grid .prompt.ok

pack .prompt

Called when the OK button is clicked.
get the x/y channel names and create the
plot. A lot of error checking has been
omitted for the sake of brevity (e.g. what
if the user does not fill in a channel?

proc createPlot {} {
set xName [.prompt.cx get]
set yName [.prompt.cy get]
destroy .prompt; # Now the top level is clear.

set seriesName "${xName}_v_{$yName}"
set title "$xName vs. $yName"

Set up the plot:

controlwidget::epicsGraph .eg -title $title
.eg grid on
.eg legend configure -position bottom
.eg addseries $seriesName $xName $yName 100 -color black -symbol {} \

-label $title

33

NSCL Epics support for Tcl/Tk (1tcl)

.eg xaxis configure -title $xName

.eg yaxis configure -title $yName

pack .eg -fill both -expand 1

}

Epics Label Widget

Name
epicsLabel — Provide a label widget that connects to an epics channel.

Synopsis

oackage require epicsLabel

::controlwidget::epicsLabel path ?options?...

OPTIONS

All options supported by the Tcllabel widget are supported by this widget. You should not, howeveruse
the -textvariable option as this is used to connect the widget to the channel.

-channelname

This option is required and can only be set at construction time. it provides the name of the epics
channel to which the widget will be connected.

METHODS

All methods supported by the Tk label widget are supported bythe epicsLabel widget.

34

NSCL Epics support for Tcl/Tk (1tcl)

SEE ALSO

epicsLabelWithUnits

Name
epicsLabelWithUnits — Show the value of an epics channel and its units if it has any.

Synopsis

package require epicsLabelWithUnits

controlwidget::epicsLabelWithUnits path ?options?

OPTIONS

See theepicsLabel(1tcl)man page for a description of he options acceptable to this widget.

METHODS

See theepicsLabel(1tcl)man page for a description of the methods recognized by this widget.

SEE ALSO

epicsLabel(1tcl)

epicsLed

Name
epicsLed — An LED bound to an epics channel.

35

NSCL Epics support for Tcl/Tk (1tcl)

Synopsis

package require epicsLed

::controlwidget::epicsLed path ?options?

OPTIONS

All options recognized by theled widget are recognized by this widget. In addition, the required option:
-channelepicsPV provides the name of the epics process variable to bind to theLED. The LED will be
’on’ if the process variable is nonzero or any textual value that tcl recognizes as boolean, or ’off’ if not.

METHODS

All methods recognized by the led widget are supported, however it is recommended that you not callon
or off.

KNOWN ISSUES

If the on or off colors are changed, this is not reflected untilthe channel next changes value.

SEE ALSO

led(1tcl)

epicsMeter

Name
epicsMeter — Provide a generic meter that can display an epics channel

Synopsis

packge require epicsMeter

36

NSCL Epics support for Tcl/Tk (1tcl)

controlwidget::epicsMeter name -channel channel ?options?

DESCRIPTION

Provides a generic meter that can display any numeric epics process variable. The meter’s normal
appearance is a vertical strip of subwidgets consisting of atextual label describing the widget contents
(defaults to the channel name), An epicsLabel that shows thecurrent value and units of the channel. A
meter whose indicator shows the current value of the channel.

OPTIONS

All options supported by thecontrowidget::meter widget are supported by this widget except the
-variable option.

-channel channel-name

Provides the name of the epics process variable (channel) todisplay on the meter. This must be
provided at construction time and cannot be changed.

-label string

Overrides the default widget label string, which is the channel name.

EXAMPLES

The example below displays the temperature outside the NSCLin degrees F, on a meter that goes from 0
to 100 degrees with tick marks every 20 degrees:

package require epicsMeter
controlwidget::epicsMeter .temp -from 0 -to 100 -majorticks 20 -channel TI9400
pack .temp

SEE ALSO

controlwidget::meter(1tcl)

37

NSCL Epics support for Tcl/Tk (1tcl)

epicsPullDown

Name
epicsPullDown — Pull down menu connected to an epics channel

Synopsis

package require epicsPullDown

controlwidget::epicsPulldownpath ?options...?

DESCRIPTION

The epicsPulldown widget provides a pull down menu that connects to an epics channel. The widget
adapts a Tk menubutton widget and associates a menu with the widget. The menu represents a set of
possible values that can be set in the process variable connected to the widget.

While the widget can easily be used for process variables withenumerated values it is not restricted to
that use. The menu button face is labeled with the current value of the process variable. If the process
variable has a value that is not represented by its menu choices the raw string value of the process
variable labels the button.

OPTIONS

All options that are recognized by the Tk menubutton widget are supported. The application, however
should not use the-menu option as that is used to connect the widget to the menu generated by the
-items option described in the list of additional options below.

In addition to all of the menubutton widgets, the widget supports the following options>

-channelname

Specifies the name of the epics process variable to which the menu will be connected. This option
must be supplied when the widget is built and cannot be dynamically modified. Selecting entries in
the widget will modify the specified process variable. The button face will reflect the current value
of the process variable.

-itemsitems

Describes the menu entries. Theitems value is a Tcl list. Each list element describes a single item
in the menu. The menu is populated top down in the order specified by theitems list.

38

NSCL Epics support for Tcl/Tk (1tcl)

Each item in the list can have one of the following forms:

• - Inserts a separator in the menu. A separator is a horizontal line that is used to visually group
related sets of items.

• labelvalue Inserts a radio button in the menu. The radio button has the label given by the text
labelvalue. This will also be the value of the process variable associated with this item. When
the menu item created is selected, the process variable willbe set tolabelvalue. When the
process variable islabelvalue the menu button will be labeledlabelvalue.

• {label value} A two element Tcl list that creates a new radio button in the menu. The first
element (label) provides the text that labels the button. The second,value provides the value
associated with this label. When this menu entry is selected,the process variable will be set to
value. When the process variable is equal tovalue the label of the menu button will belabel.

-tearoff true | false

Determines whether or not the pull down menu can be torn off into a new top level widget. Iftrue
(the default), the menu can be torn off. Iffalse not. Menus that can be torn off will have a dashed
line across the top of them. Clicking on that dashed line makes a new top level widget that
duplicates the menu. When the menu is torn off, you can still operate the menu button and, in fact,
as many menu entries as desired can be torn off.

METHODS

All of the widget commands of the Tk menubutton widget are supported.

EXAMPLES

The example below creates an epics pull down menu connected to IGLI0. The first three menu items are
values. The fourth a separator. The final two are label value pairs:

package require epicsPullDown

controlwidget::epicsPullDown .pd -channel IGLI0 -tearoff true
.pd configure -items {1 2 3 - {four 4} {{five units} 5}}

pack .pd

The epicslist command can also be used to build up the items list. The next example produces the same
result, but useslist and defines the menu items when the drop down is constructed.

package require epicsPullDown

39

NSCL Epics support for Tcl/Tk (1tcl)

controlwidget::epicsPullDown .pd -channel IGLI0 \
-tearoff true \

-items [list 1 2 3 - \
[list four 4] \
[list "five units" 5]]

pack .pd

The next example shows how to build the item list automatically for an epics enumerated channel. There
are two complications.

• Individual strings may have spaces in them and not be interpreted as single item entries.

• The channel may not connect immediately so you can’t build upthe item list until the connection
completes.

The example below deals with all of these issues:

package require epicsPullDown

proc configureItems {widget channel} {
if {[llength [K5RGA_M_O2.SCAN values]] != 0} {

foreach value [K5RGA_M_O2.SCAN values] {
lappend itemlist [list $value]

}
$widget configure -items $itemlist

} else {
Not connected yet reschedule.

after 100 [list configureItems $widget $channel]
}

}

controlwidget::epicsPullDown .pd -channel K5RGA_M_O2.SCAN

configureItems .pd K5RGA_M_O2.SCAN

pack .pd

40

NSCL Epics support for Tcl/Tk (1tcl)

epicsStripChart

Name
epicsStripChart — Wrap a BLT stripchart with code for plotting epics channel time evolutions.

Synopsis

package require epicsStripChart

controlwidget::epicsStripChart name ?options?

name addchannel channel milliseconds ?options?

name removechannel channel

DESCRIPTION

This widget adds machinery to the BLT Strip chart widget to support adding epics channels to a chart.
For a summary of the BLT stripchart widget, see the section BLT STRIPCHART below. For full
information about the BLT stripchart widget see the online man pages at e.g.
http://man-wiki.net/index.php/N:blt_stripchart.

OPTIONS

All BLT stripchart widget options are supported. For some ofthe non-standard useful options see BLT
STRIPCHART below, or the online man page referenced in the DESCRIPTION section.

41

NSCL Epics support for Tcl/Tk (1tcl)

METHODS

All blt stripchart methods are supported, in addition to theones described below. For some of the more
useful blt stripchart methods, see the section BLT STRIPCHART below, or refer to the online manual
pages for the stripchart widget referred to in the DESCRIPTION section.

addchannelname milliseconds ?options?

Adds the channelname to the strip chart as a newchannelHistory element. The strip chart will
automatically trace the channel value updating everymilliseconds milliseconds. The optional
list of ?options, can be any of the options accepted by the BLT stripchart widget’s element
component.

The method returns a name which is both the name of the new BLT strip chart element and a
command that can be used to manipulate the channelHistory object. For more information about the
channelHistory object, see the section channelHistory OBJECTS below.

removechannelname

Removes the specified channel from the strip chart. Note thatthis is thechannel name not the name
of the channelHistory object returned by theaddchannelmethod.

Removing the specified channel from the strip chart destroysthe element created for the trace. It
also destroys the associated channelHistory object and allresources associated with that object.

channelHistory OBJECTS

Adding a channel to the stripchart creates a new object called achannelHistory object and returns the
object name to the user. This object also has methods as described in the synopsis below:

set object [.stripchart addchannel name millisecondds ?options?

object clear

object clearfirst points

object keep points

object updateperiod milliseconds

object get

42

NSCL Epics support for Tcl/Tk (1tcl)

object names

channelHistory OPTIONS

These options should be treated as readonly. That is you should alwayscgetthem and neverconfigure
them.

-period

The number of milliseconds between each update of the object

-channel

The name of the EPICS channel monitored by this objecdt

-timebase

The time relative to which historical data time offsets are measured. This is the output of a [clock
seconds] command. Note that time offsets are floating point seconds. It is possible to use a time
offset in conjunction with [clock format], a format string and a bit of arithmetic to produce a
timestamp for an individual data item that is exact to the millisecond at which the data was updated.

channelHistory METHODS

object clear

Clears all the historical data in the object. On the stripchart this means the trace for the channel
managed by this element will vanish and then start accumulating again as time passes.

In a larger application, you could clear the entire strip chart by iterating through the channelHistory
elements you created and clearing them all. Since the channelHistory element object name is the
same as the stripchart element name, the BLT stripchartelement namescan return alll the channel
history objects createdas long as the chart only contains epics channels.

object clearfirst points

Removes the firstpoints points of history data from the object. See thekeepmethod for a better
way to keep the history data size under control.

object keeppoints

Requires that the history object retain at mostpoints data points. After each update interval, if the
history object contains more than the specified number of points, the oldest points are discarded
until the correct number of points are retained.

43

NSCL Epics support for Tcl/Tk (1tcl)

object updateperiodmilliseconds

Changes the update period to themilliseconds milliseconds. this takes effect after the next
update period.

object get

Returns the historical data for the parameter logged. The historical data is returned as a Tcl list of
pairs. Each pair contains a time offset (floating point seconds) from the time base of the object (See
the -timebase option), and the value of the channel at that time.

This can be used to, e.g. perform analysis, logging or serialization for later re-load, of the historical
data.

object names

The historical data are stored in two BLT vectors, a time and adata vector. This method returns a
two element list consisting of the name of the time and data vectors in that order.

BLT STRIPCHART

This section summarizes the BLT stripchart widget. This is intended just to provide an overview of the
most useful options. It is not intended as a complete document for that widget. Complete documentation
of the BLT strip chart widget can be found online at: http://man-wiki.net/index.php/N:blt_stripchart.

The stripchart widget is very flexible it can be configured viaoptions, methods, and components.
Components are named entities that can be added to the stripchart and then manipulated via their own
options and components. The following component are supported:

axis

Coordinate axes control the region of data displayed and howthe data are scaled. Up to four axes (2
x and 2 y) can be displayed on the chart.

crosshairs

crosshairs can be defined to get a better idea of where the cursor is

element

Elements are data point sets and their attributes. Each channel added to the chart creates an element.

grid

The grid extends major and minor ticks across the plotting area to make it easier to read the location
of points off the plot by eye.

44

NSCL Epics support for Tcl/Tk (1tcl)

legend

Legends display labels for the elements and their styles. Note that while the strip chart default label
is the element name, theepicsStripChart addchannelcommand labels the element’s entry in the
legend with the EPICS channel name.

marker

Markers are used to annotate or highlight areas of the graph.Many different marker types are
supported including text, bitmaps, polylines, images, polgons, and embedded widgets.

pen

Pens define attributes for elements. They can be thought of asattribute bundles that can be applied
in a single configuration parameter.

postscript

The postscript component allows you to save the contents of the graph in a postscript file as well as
to configure the way in which that file is produced.

Key Stripchart options

This section provides a summary of a few of the more interesting, non-standard options recognized by
the strip chart widget. See the online docs for complete documentation.

-halo pixels

Specifies a maximum distance to consider when searching for the closest data point (see the
element’s closest operation below). Data points further than pixels away are ignored. The default is
0.5i. This is used e.g. to process mouse hits in event bindings.

-height measure

Specifies the requested height of widget. The default is 4i.

-invertxy boolean

Indicates whether the placement X-axis and Y-axis should beinverted. If boolean is true, the X and
Y axes are swapped. The default is 0 (unswapped).

-tile image

Specifies a tiled background. If image isn’t "", the background is tiled using image. Otherwise, the
normal background color is drawn. Image must be an image created using the Tk image command.
The default is "".

-title text

Sets the title totext. If text is "", no title will be displayed.

-width measure

Specifies the requested width of the widget. The default is 5i.

45

NSCL Epics support for Tcl/Tk (1tcl)

Key Stripchart methods

This section is a summary of the most useful stripchart methods. See the online manpage for the BLT
Stripchart for more complete documentation. (We don’t bother to document configure and cget as these
are ’well understood’ Tk methods).

axisoperation ...

Manipulates axis components. See the section "Stripchart components" for more information about
this.

crosshairsoperation ...

Manipulates the crosshairs component of the stripchart. See the section "Stripchart components"
below for more information.

elementoperation ...

Manipulates element components. Note that channels becomeelement components of the stripchart.
See the section "Stripchart components" below for more information.

grid operation ...

Manipulates the grid component of the stripchart. See the section "Stripchart components" below
for more information.

invtransform winX winY

Performs a coordinate transform that maps the point defined by (winX winY) into the graph real
coordinate system. Returns the transformed X/Y coordinates.

legendoperation ...

Manipulates the legend component of the strip chart widget.See the section "Stripchart
components" below for more information.

marker operation ...

Manipulates marker components of the strip chart widget. See the section "Stripchart components"
below for more information.

postscript operation ...

Manipulates the postscript snapshot component of the widget.

transform x y

Transforms the point (x y) specified in graph coordinates to widget coordinates.

xaxis | x2axis | yaxis | y2axisoperation ...

Manipulates an axis component of the graph. See the section "Stripchart components" below for
more information.

46

NSCL Epics support for Tcl/Tk (1tcl)

Stripchart components

This section describes the various stripchart components and how to create and manipulate them.

Stripchart axes

Stripchart axes.Four coordinate axes are automatically created: two X-coordinate axes (x and x2) and
two Y-coordinate axes (y, and y2). By default, the axis x is located in the bottom margin, y in the left
margin, x2 in the top margin, and y2 in the right margin.

An axis consists of the axis line, title, major and minor ticks, and tick labels. Major ticks are drawn at
uniform intervals along the axis. Each tick is labeled with its coordinate value. Minor ticks are drawn at
uniform intervals within major ticks.

The range of the axis controls what region of data is plotted.Data points outside the minimum and
maximum limits of the axis are not plotted. By default, the minimum and maximum limits are
determined from the data, but you can reset either limit.

You can create and use several axes. To create an axis, invokethe axis component and its create
operation.

Create a new axis called "temperature"

.s axis create temperature

You map data elements to an axis using the element’s-mapy and-mapx configuration options. They
specify the coordinate axes an element is mapped onto.

Now map the temperature data to this axis.

.s element create "temp" -xdata $x -ydata $tempData \

-mapy temperature

While you can have many axes, only four axes can be displayed simultaneously. They are drawn in each
of the margins surrounding the plotting area. The axes x and yare drawn in the bottom and left margins.

47

NSCL Epics support for Tcl/Tk (1tcl)

The axes x2 and y2 are drawn in top and right margins. Only x andy are shown by default. Note that the
axes can have different scales.

To display a different axis, you invoke one of the following components: xaxis, yaxis, x2axis, and y2axis.
Theuseoperation designates the axis to be drawn in the corresponding margin: xaxis in the bottom,
yaxis in the left, x2axis in the top, and y2axis in the right.

Display the axis temperature in the left margin.

.s yaxis use temperature

You can configure axes in many ways. The axis scale can be linear or logarithmic. The values along the
axis can either monotonically increase or decrease. If you need custom tick labels, you can specify a Tcl
procedure to format the label as you wish. You can control howticks are drawn, by changing the major
tick interval or the number of minor ticks. You can define non-uniform tick intervals, such as for
time-series plots.

This section describes the major operations on the strip chart axis component. All of these are invoked
using the form

.stripchart axis operation ...

Where we will now describe the most useful operations.

createname ?options?

Creates a new axisname the optional options configure the axis as per the configuration options
described below.

deletename

Deletes an existing axis.

invtransform name screenCoords

TransformsscreenCoords from the widget coordinate system to the axis coordinate system
defined by the axisname.

48

NSCL Epics support for Tcl/Tk (1tcl)

names?pattern ...

Returns the name of all defined axes that match at least one of the patterns provided. Patterns can
containglob wildcard characters. If no pattern is provided the command operates as if there was a
single pattern:*.

transform axisName axisCoord

ReturnsaxisCoord transformed to widget coordinates using the transformation defined by the axis
axisName

Axes can be configured using theconfigure subcommand and their configuration can be inquired using
thecgetsubcommand. For example:

.stripchart axis configure axisName ...

More useful configuration parameters for an axis include:

-logscale boolean

Indicates whether the scale of the axis is logarithmic or linear. Ifboolean is true, the axis is
logarithmic. The default scale is linear.

-majorticks ticklist

Specifies where to display major axis ticks. You can use this option to display ticks at non-uniform
intervals.ticklist is a list of axis coordinates designating the location of major ticks. No minor
ticks are drawn. Ifticklist is "", major ticks will be automatically computed. The default is "".

-max value

Sets the maximum limit of axisName. Any data point greater than value is not displayed. If value is
"", the maximum limit is calculated using the largest data value. The default is "".

-min value

Sets the minimum limit of axisName. Any data point less than value is not displayed. If value is "",
the minimum limit is calculated using the smallest data value. The default is "".

-minorticks ticklist

Specifies where to display minor axis ticks. You can use this option to display minor ticks at
non-uniform intervals.ticklist is a list of real values, ranging from 0.0 to 1.0, designatingthe

49

NSCL Epics support for Tcl/Tk (1tcl)

placement of a minor tick. No minor ticks are drawn if the -majortick option is also set. If minorList
is "", minor ticks will be automatically computed. The default is "".

-shiftby value

Specifies how much to automatically shift the range of the axis. When the new data exceeds the
current axis maximum, the maximum is increased in increments ofvalue. You can use this option
to prevent the axis limits from being recomputed at each new time point. Ifvalue is 0.0, then no
automatic shifting is done. The default is 0.0.

-title text

Sets the title of the axis. Iftext is "", no axis title will be displayed.

The axis positions at the bottom, top, left and right can be selected and manipulated using thexaxis
xaxis1 yaxis yaxis2commands respectively. In this document, we only describe how to select an axis for
use in that position:

.stripchart {xaxis | xaxis1 | yaxis | yaxis1} use axisName

For example, to create an axis named george and display it at the top part of the graph:

.stripchart axis create george

.stripchart xaxis1 use george

Stripchart crosshairs

Crosshairs.This section describes the crosshairs component of the stripchart. Cross hairs consist of two
intersecting lines (one vertical and one horizontal) drawncompletely across the plotting area. They are
used to position the mouse in relation to the coordinate axes. Cross hairs differ from line markers in that
they are implemented using XOR drawing primitives. This means that they can be quickly drawn and
erased without redrawing the entire strip chart.

There is only a single crosshair. To turn crosshairs on for the stripchart .stripchart:

.stripchart crosshairs on

50

NSCL Epics support for Tcl/Tk (1tcl)

Similarly to turn crosshairs off:

.stripchart crosshairs off

Stripchart elements (traces)

Elements are data sets that are drawn on the stripchart. In the case of theepicsStripChart elements are
created using theaddchannelmethod. It is also possible to intermix elements created ’manualy’. We
will not document how to do this. You will need to read the online BLT Stripchart widget to see how to
do this.

When you create an element viaaddchannelthe name of the element will be returned and can be
captured via e.g.:

set elementName [.stripchart addchannel someChannel]

Once this is done you can use$elementName wherever an element name is required to refer to that
element.

Elements can be configured with various options, and their configurations queried via e.g.:

.stripchart element configure name options...

.stripchart element cget name option-name

A useful subset of the options is:

51

NSCL Epics support for Tcl/Tk (1tcl)

-activepen penName

Specifies pen to use to draw active element. IfpenName is "", no active elements will be drawn. The
default is activeLine.

-color color

Sets the color of the traces connecting the data points.

-linewidth pixels

Specifies the line width of the element in pixels. Ifpixels is zero, no line will be drawn, between
symbols.

-mapx axisName

Selects the X-axis to map the element’s X-coordinates onto.axisName must be the name of an
axis. The default isxaxis.

-mapy axisName

Selects the Y-axis to map the element’s Y-coordinates onto.axisName must be the name of an axis.
The default is yaxis.

-smooth style

Specifies how connecting line segments are drawn between data points.style can be either
linear, step, natural , or quadratic. If style is linear, a single line segment is drawn,
connecting both data points. Whenstyle is step, two line segments are drawn. The first is a
horizontal line segment which steps the next x-coordinate.The second is a vertical line, moving to
the next y-coordinate. Bothnatural andquadratic generate multiple segments between data
points. Ifnatural, the segments are generated using a cubic spline. Ifquadratic, a quadratic
spline is used. The default is linear.

-symbol symbol

Specifies the symbol for data points.symbol can be eithersquare, circle, diamond, plus,
cross, splus, scross, triangle, "" (where no symbol is drawn), or a bitmap. Bitmaps are
specified as"source ?mask?", where source is the name of the bitmap, and mask is the bitmap’s
optional mask. The default iscircle.

Element are invoked using the following general form:

.stripchart element methodname ...

Where the most useful methodnames and their parameters are:

closestx y varName ?option value?... ?elemName?...

Finds the data point closest to the window coordinatesx andy in the elementelemName.
ElemName is the name of an element, that must not be hidden. If no elements are specified, then all

52

NSCL Epics support for Tcl/Tk (1tcl)

visible elements are searched. It returns via the array variable varName the name of the closest
element, the index of its closest point, and the graph coordinates of the point. Returns 0, if no data
point within the threshold distance can be found, otherwise1 is returned. The following
option-value pairs are available.

• -halo distance

Specifies a threshold distance where selected data points are ignored.distance is a valid screen
distance, such as 2 or 1.2i. If this option isn’t specified, then it defaults to the value of the
stripchart’s-halo option.

• -interpolate boolean

Indicates that both the data points and interpolated pointsalong the line segment formed should
be considered. Ifboolean is true, the closest line segment will be selected instead of the closest
point. If this option isn’t specified,boolean defaults to0 which is a Tclfalse value.

existselemName

Returns 1 if an element elemName currently exists and 0 otherwise.

names?pattern? ...

Returns the elements matching one or more pattern. If no pattern is given, the names of all elements
is returned. Note that if the widget is only displaying epicschannels, these names are the same as
the names of the channelHistory objects that contain and maintain the data that is being plotted.

Stripchart grids

Stripchart Grids. Stripchart grids extend the tick marks on the axes across theentire face of the graph
part of the widget. grids make it easier to read a point off thegraph.

Grids have configuration options that are set and gotten via e.g.

.stripchart grid configure options...

.stripchartgrid cget option-name

53

NSCL Epics support for Tcl/Tk (1tcl)

Grids also have methods that are invoked via e.g:

.stripchart grid methodname ...

The key configuration options for the grid are:

-color color

Sets the color of the grid lines. The default is black.

-mapx xAxis

Specifies the X-axis to display grid lines.XAxis must be the name of an axis. The default isxaxis.

-mapy yAxis

Specifies the Y-axis to display grid lines.YAxis must be the name of an axis. The default isy.

In addition to theconfigure andcgetmethods that manipulate grid configuration parameters. thetwo
main methods are:

off

Turns off the display the grid lines.

on

Turns on the display the grid lines.

Stripchart legends

Stripchart legends.The legend displays a list of the data elements. Each entry consists of the element’s
symbol and label. The legend can appear in any margin (the default location is in the right margin). It can
also be positioned any where within the plotting area.

The legend documentation we will provide here are the legendoptions that can all be configured or
queried via e.g.:

.stripchart configure options...

.stripchart cget option-name

Where the most common options are:

54

NSCL Epics support for Tcl/Tk (1tcl)

-hide boolean

Indicates whether the legend should be displayed. Ifboolean is true, the legend will not be drawn.
The default is false, allowing the legend to be visible.

-postition pos

Specifies where the legend is drawn. Ifpos is left, left, top, or bottom, the legend is drawn in
the specified margin. Ifpos is plotarea, then the legend is drawn inside the plotting area. Ifpos

is in the form"@x,y", wherex andy are the window coordinates, the legend is drawn in the
plotting area at the specified coordinates. The default is right.

Stripchart Pens

Stripchart Pens.Stripchart pen components are bundles of attributes that can be applied to elements
(traces). The construction and manipulation of pens is an advanced topic refer to the blt::stripchart online
manpage for information about this component.

Stripchart Postcript output

The postscript component support the generation of a postscript file that allows printing the contents of
the plot. The most commonly used postcript method is:

.stripchart postscript output filename options...

Where the most common options are:

-colormode mode

Specifies how to output color information.Mode must be eithercolor (for full color output),gray
(convert all colors to their gray-scale equivalents) ormono (convert foreground colors to black and
background colors to white). The default mode iscolor.

-landscape boolean

If boolean is true, this specifies the printed area is to be rotated 90 degrees. In non-rotated output
the X-axis of the printed area runs along the short dimensionof the page (“portrait” orientation); in
rotated output the X-axis runs along the long dimension of the page (“landscape” orientation).
Defaults to 0.

Stripchart Markers

Stripchart Markers. Markers are simple drawing procedures used to annotate or highlight areas of the
strip chart. Markers have various types: text strings, bitmaps, images, connected lines, windows, or
polygons.

55

NSCL Epics support for Tcl/Tk (1tcl)

While the use of markers can be useful in many application we donot want to reproduce the entire
blt::stripchart manpage about markers here. We will only show how to create markers of the various sorts
and what each marker type’s configuration options are.

All markers understand a-coords option that contains a list of coordinates. The number of coordinates
required and their meaning depends on the marker type.

All markers understand a-name option that provides a unique name for the marker. If not provided, the
widget will generate a unique name for you.

Creating a bitmap marker. A bitmap marker displays a bitmap. The size of the bitmap is controlled by
the number of coordinates specified. If two coordinates, they specify the position of the top-left corner of
the bitmap. The bitmap retains its normal width and height. If four coordinates, the first and second pairs
of coordinates represent the corners of the bitmap. The bitmap will be stretched or reduced as necessary
to fit into the bounding rectangle.

Bitmap markers are created with the marker’s create operation in the form:

.stripchart marker create bitmap ?options?

This command returns the name of the marker created.

Bitmap specific options of interest are:

-bitmap bitmap

Specifies the bitmap to be displayed. Ifbitmap is "", the marker will not be displayed. The default
is "".

-mask mask

Specifies a mask for the bitmap to be displayed. This mask is a bitmap itself, denoting the pixels
that are transparent. Ifmask is "", all pixels of the bitmap will be drawn. The default is "".

-rotate theta

The marker is first rotated and then placed according to its anchor position. The default rotation is
0.0.

Image markers.A image marker displays an image. Image markers are created with the marker’s create
operation in the form:

.stripchart marker create image -image image-name

56

NSCL Epics support for Tcl/Tk (1tcl)

The coordinates for an image have the same meaning as for a bitmap.

Line Markers. A line marker displays one or more connected line segments. Line markers are created
with marker’s create operation in the form:

.stripchart marker create line ?options?

The coordinates in this case are the coordinates of the vertices of the polyline that make up the marker.
There must be at least four coordinates, x1,y1, and x2,y2 of asingle line segment, however there can be
additional points to add additional line segments to the marker.

The commonly used options for the line marker are:

-foreground color

Sets the foreground color. The default foreground color is black.

-linewidth pixels

Sets the width of the lines. The default width is 0.

Polygon Markers. These are essentially Line markers with an added line connecting the last point to the
first point, however just to be perverse, some of the options have different names.

.stripchart marker create polygon options...

Key options are:

-fill color

Sets the fill color of the polygon. Ifcolor is "", then the interior of the polygon is transparent. The
default is white.

-outline color

Sets the color of the outline of the polygon. The default is black.

Text Markers. A text marker displays a string of characters on one or more lines of text. Embedded
newlines cause line breaks. They may be used to annotate regions of the strip chart. One pair of
coordinates must be supplied with the marker to specify where the text is modified by the-anchor
options.

Text markers are created as follows:

.stripchart marker create text ?option? ...

57

NSCL Epics support for Tcl/Tk (1tcl)

Where the most commonly used options are:

-anchor anchor

Anchor tells how to position the text relative to the positioning point for the text. For example, if
anchor is center then the text is centered on the point; ifanchor is then the text will be drawn
such that the top center point of the rectangular region occupied by the text will be at the
positioning point. This default iscenter.

-foreground color

Sets the foreground color of the text. The default is black.

-justify justify

Specifies how the text should be justified. This matters only when the marker contains more than
one line of text.Justify must beleft, right, or center. The default iscenter.

-rotate theta

Specifies the number of degrees to rotate the text.Theta is a real number representing the angle of
rotation. The marker is first rotated along its center and is then drawn according to its anchor
position. The default is 0.0.

-text text

Specifies the text of the marker. The exact way the text is displayed may be affected by other
options such as-anchor or -rotate.

Window markers. Window markers allow you to place other widgets on the stripchart. The idea is that
you create a widget that is a child of the stripchart. You thenadd it as a window marker using the
coordinates to specify the position of the widget. e.g:

.stripchart marker create window -window .stripchart.w ...

EXAMPLES

This section will show some simple examples of how to create and use the epicsStripchart widget.

58

NSCL Epics support for Tcl/Tk (1tcl)

Creating a simple stripchart

This example shows how to create the simplest stripchart displaying a single control system parameter.
The stripchart produced will display the time evolution of the parameter K5COILA-I, updated once a
second. Each data point will be represented as a circle (default symbol). Black lines will connect the
circles (default line color). Both the value and time scaleswill auto-scale to fit the parameter values and
the time range. This will cause the time range to dynamicallyshrink to contain the the entire data set:

package require epicsStripChart

controlwidget::epicsStripChart .e
.e addchannel K5COILA-I 1000
pack .e

Setting stripchart trace attributes

This example is the same as the previous one, however we will configure the trace so that it has no
symbols and is red in color

package require epicsStripChart

controlwidget::epicsStripChart .e
set trace [.e addchannel K5COILA-I 1000]

.e element configure $trace -color red -symbol {}
pack .e

This example also shows how to capture the name of the element/history object for later manipulation.
We can shorten this example, by using the fact that theaddchannelmethod of epicsStripChart allows
you to specify the configuration options for the element whenyou create it:

package require epicsStripChart

controlwidget::epicsStripChart .e
.e addchannel K5COILA-I 1000 -color red -symbol {}

pack .e

59

NSCL Epics support for Tcl/Tk (1tcl)

Configuring the appearance of the plot.

The examples so far have suffered from a continuously shrinking time axis, no grid, a badly positioned
legend, and a Y axis that does not really give you an idea of theabsolute magnitude of the data. In this
example we’ll make the Y axis start at 0, and the X axis dispalyonly the last minute of data, shifting by
10 seconds when the trace goes out of range. We will also turn on a grid, and set the legend at the bottom
of the graph.

package require epicsStripChart

controlwidget::epicsStripChart .e
.e yaxis configure -min 0.0
.e xaxis configure -autorange 60.0 -shiftby 10.0
.e grid on
.e legend configure -position bottom
.e addchannel K5COILA-I 1000 -color red -symbol {}

pack .e

Adding titles

This example builds on the previous example by adding a plot title and axis titles.

package require epicsStripChart

controlwidget::epicsStripChart .e -title {NSCL Strip Chart}
.e yaxis configure -min 0.0 -title {Parameter Values}
.e xaxis configure -autorange 60.0 -shiftby 10.0 -title {Time}
.e grid on
.e legend configure -position bottom
.e addchannel K5COILA-I 1000 -color red -symbol {}

pack .e

A graph with several traces

This example shows that you can add several traces to the graph. We will let the y axis go back to auto
ranging, as the K800 B coil current was negative when this wastested:

package require epicsStripChart

controlwidget::epicsStripChart .e -title {NSCL Strip Chart}
.e yaxis configure -title {Parameter Values}
.e xaxis configure -autorange 60.0 -shiftby 10.0 -title {Time}

60

NSCL Epics support for Tcl/Tk (1tcl)

.e grid on

.e legend configure -position bottom

.e addchannel K5COILA-I 1000 -color red -symbol {}

.e addchannel K5COILB-I 1000 -color blue -symbol {}

.e addchannel K8COILA-I 1000 -color green -symbol {}

.e addchannel K8COILB-I 1000 -color black -symbol {}

pack .e

Accessing historical data

This application adds a File menu. The File menu will have twomenu items. The Exit menu item will
exit the program. The Save.. menu item will prompt for a filename and save the historical data on the plot.

Doing this involves using the channelHistory object created by the addchannel method. We wil create a
file that has a header that consists of a line containing the channel name, and a line containing the time of
the first measurement. We will then provide the historical data as one line per measurement where each
line consists of a pair of fields. The first field, is the offset in seconds from the base time, and the second
the parameter value at that time. We will also change the update time to once every 0.5 seconds (500 ms).

For simplicity, we will go back to a single trace of the K500 A coil current.

package require epicsStripChart

First set up the strip chart:

package require epicsStripChart

controlwidget::epicsStripChart .e -title {NSCL Strip Chart}
.e yaxis configure -min 0.0 -title {Parameter Values}
.e xaxis configure -autorange 60.0 -shiftby 10.0 -title {Time}
.e grid on
.e legend configure -position bottom

add the element, save the history object in the
global variable ’history’.

set history [.e addchannel K5COILA-I 1000 -color red -symbol {}]

pack .e

proc to save the history data; name of history object is
passed in.

61

NSCL Epics support for Tcl/Tk (1tcl)

proc saveHistory {h} {
set filename [tk_getSaveFile -defaultextension .trace \

-title {Save file as...} \
-filetypes { \

{{Trace files} {.trace} TEXT} \
{{Text Files} {.txt} TEXT} \
{{All Files} * } }]

Blank filename means the user hit cancel

if {$filename eq ""} {
return

}

If we can’t open the file put up a nice error dialog:

if {[catch {open $filename w} fd]} {
tk_messageBox -icon error -type ok -title {Open Failed} \

-message "Could not open $filename : $fd"
return

}
Now we can write the data to file:

set channel [$h cget -channel]
set startTime [$h cget -timebase]

puts $fd $channel
puts $fd [clock format $startTime]

set data [$h get]
foreach point $data {

puts $fd "[lindex $point 0] [lindex $point 1]"
}
close $fd

}

Proc to exit if the user confirms:

proc Exit {} {
set answer [tk_messageBox -icon question -type yesno -title {Exit?} \

-message {Do you really want to exit?}]
if {$answer eq "yes"} {

exit
}

}

Create the file menu

menu .bar
menu .bar.file -tearoff 0
.bar add cascade -label File -menu .bar.file

62

NSCL Epics support for Tcl/Tk (1tcl)

.bar.file add command -label {Save Data...} -command [list saveHistory $history]

.bar.file add separator

.bar.file add command -label {Exit...} -command Exit

. configure -menu .bar

SEE ALSO

blt::stripchart(3blt), epics(3tcl)

typeNGo bound to epics

Name
epicsTypeNGo — Provide epics bindings to a typeNGo widget.

Synopsis

package require epicsTypeNGo

controlwidget::epicsTypeNGopath ?options?...

SUMMARY

Links an epics channel to atypeNGowidget. Committing the value results in setting the value ofthe
control channel, while the label continuously displays theup-to-date value of the channel. Validation
serves to prevent a commit on nonsense values.

OPTIONS

All typeNGo options except-commandare supported by this, however the use of the-textvariable
option will break the binding of the label to the epics channel. There may or may not be good reasons to
do this. The-channeloption is added and selects which channel the widget will be bound to.

63

NSCL Epics support for Tcl/Tk (1tcl)

METHODS

All typeNGo methods are supported.

EXAMPLES

This example shows how to create a horizontally laid out epics type and go widget, that only allows
floating point channel values to be entered. See the typeNGo widget’s-validate, -orient switches to
understand this example.

package require epicsTypeNGo

controlwidget::epicsTypNGo .tng -channel Z001F-C -orient horizontal \
-validate [list string is double -strict %V%]

pack .tng

SEE ALSO

typeNGo(1tcl)

epicsspinbox

Name
epicsspinbox — Connects a spinbox widget with an epics channel.

Synopsis

package require epicsSpinbox

::controlwidget::epicsSpinBoxpath ?options?...

64

NSCL Epics support for Tcl/Tk (1tcl)

OPTIONS

All options accepted by a Tk::spinbox are accepted by this widget, and apply to the spinbox piece of this
widget. In addition, the following options have been implemented:

-channelname

Required at construction time, the value of this option specifies the EPICS process variable to be
controlled/monitored by this widget. Any channel name or record field can be specified (although
clearly it only pays to specify those that can be modified).

-showsettingyes-no

If the value of this option can be evaluated as booleantrue, a label giving the actual value of the
process variable will be displayed above the spinbox. If not, the label will be omitted. This can be
dynamically modified.

METHODS

Get

Returns the current value of the process variable. Note thatthis is the value in the-showsetting
label (if that would be displayed), rather than the setting from the spinbox itself.

Setvalue

Sets the value of the spinbox and the process variable tovalue.

Vertical meter widget

Name
meter — Provide a widget that is a vertical meter.

Synopsis

package require meter

controlwidget::meter path ?options...?

65

NSCL Epics support for Tcl/Tk (1tcl)

OPTIONS

-from value

Defines the lower end of the meter range and scale. If not provided, this defaults to -1.0.value
should be a number that can be interpreted as a floating point value.

-to value

Defines the upper end of the meter range and scale. If not provided, this defaults to 1.0.value
should be a number that can be interpreted as a floating point value.

-height value

Sets the height of the widget. This can be specified in pixels,centimeters or inches like any other tk
dimension.

-width value

Specifies the width of the widget. This can be specified in pixels, centimeters or inches like any
other tk dimension.

-variable name

Links the height of the meter’s indicator to a Tcl variable inglobal or namespace scope. As the
value of this variable changes, the height of the meter indicator also changes. Setting to a blank
name removes any linkage between the meter value and a variable.

-majorticks interval

Provides the interval between major ticks on the meter. Notethat major ticks get labeled, so be sure
that you have enough range between major ticks to allow the label to be legible.

-minorticks number

Specifies the number of minor tick intervals between major ticks (intervals in this case implies that
there will be one fewer tick marks than you specify e.g. 5 intervals require 4 ticks). Minor tick
marks are not labeled, and are somewhat shorter than major tick marks.

-log boolean

If the boolean is true, the meter will display in logscale. This has several other side effects:

• The user supplied values of-majorticks and-minorticks are ignored and chosen by the meter
widget

• The-from and-to values are pushed to nearest decades below and above respectively, for
example-from 55 and-to 750will be pushed to-from 10 and-to 1000, resulting in two full
decades of meter range. Ranges that encompass the negative direction are not supported and will
result in an error.

• Data values that are zero are treated as .0001.

• Negative values will display as the lowest displayable value on the meter.

66

NSCL Epics support for Tcl/Tk (1tcl)

METHODS

setvalue

Sets the meter indicator height to a specific value. If the meter has a-variable specified, the variable
is set as well.

get

Returns the current meter value.

SEE ALSO

controlwidget::bcmMeter

LED Widget

Name
led — Provide a widget that looks like an LED.

Synopsis

package require led

controlwidget::led path ?options?

OPTIONS

-sizemeasure

Specifies the size of the widget (LED widgets are symmetric, so this specifies both the height and
width of the widget.

67

NSCL Epics support for Tcl/Tk (1tcl)

-on color

Specifies the color of the LED when it is on. By default this is green. The color can be specified in
any way normally acceptable to Tk.

-off color

Specifies the color of the LED when it is off. By default, this is black.

-variable name

Specifies the name of a variable with permanent scope (globalor in a namespace) that will control
the value of the LED. If the value of the variable is 0 or a valid’false’ boolean, the LED will be off,
otherwise, on.

METHODS

on

Turn the LED on. If there is a variable associated with the LED, it is set to 1.

off

Turn the LED off. If there is a variable associated with the LED, it is set to 0.

SEE ALSO

epicsLed(1tcl)

typeNGo compound widget

Name
typeNGo — provides a compound widget for entering text with an explicit commit.

Synopsis

package require typeNGo

68

NSCL Epics support for Tcl/Tk (1tcl)

controlwidget::typeNGo path ?options...?

SUMMARY

ThetypeNGo is a compound widget that consists of vertically stacked label, entry and button widgets.
The idea is that this will typcially be used to provide controlled updates of the value of the variable that
controls the label widget. If you consider the case of an entry and a label both bound via-textvariable to
the same variable, as you type in the entry, the variable value dynamically changes. This is not suitable
for controls applications e.g.

The typeNGo widget provides explicit control over when the entry widget is a correct value worth
propagating to the application. This is done either by clicking the button or by hitting the enter/return key
while the focus in in the entry widget.

Validation scripts are also supported (see-validate in the OPTIONS secion). Validation scripts are
invoked when the button is clicked and must return a true or false value. If false is returned, the
-commandscript is not invoked and the entry field is returned to its prior value.

OPTIONS

All label operations except-text are forwarded directly tothe label widget contained by the megawidget.
See, however the-label option.

-orient vertical | horizontal

Only processed at widget creation time. This option determines the layout of the widget. If the value
is vertical (the default), the label, entry and button are laid out vertically in that order. If the
value ishorizontal, the label, entry and button are laid out horizontally in that order. See
however,-showlabel.

-showlabelbool

Only processed at widget creation time. This option determines if the label widget is actually
displayed. If the value istrue (default), the label widget is displayed. If the value isfalse, the
label widget is created but not displayed.

-text labelstring

Provides a label for the button widget.

-label labelstring

Provides a string for the label. This is overridden if a-textvariable is specified.

69

NSCL Epics support for Tcl/Tk (1tcl)

-commandscript

Provides a callback script that will be invoked when the entry is committed via a button click or
enter key. In the script, %W is substituted wih the widget command name. %V is substituted with
the value of the entry.

-validate script

Provides a scripttoperform validation. The %V and %W substitutions described in-commandare
supported. If the script does not return a true value, the-commandscript will not be executed, and
the entry field value will be returned to its prior value.

METHODS

Get

Gets the current value of the entry widget.. this will be the text currently displayed in that widget,
not the most recently committed value.

Setvalue

Sets the value of the entry widget to thevalue string. This does not commit it (seeInvoke). This
also does not do any validation.

Invoke

Simulates a button click. This will cause entry validiationand, if permitted, a commit of the entry.

BINDINGS

<Return> - with focus in the entry widget.

does anInvoke on self.

<FocusOut> - With focus in the entry widget

restores the prior value to the widget.

70

NSCL Epics support for Tcl/Tk (1tcl)

EXAMPLES

This example shows how to use the -validate switch to ensure that the entry field has a legal floating
point value when the -command script would be invoked. If theentry field is not a floating point value,
the prior value of the field is restored.

package require typeNGo
controlwidget::typeNGo .tng -validate [list string is double -strict %V]
pack .tng

This example uses the Tclstring is doublecommand to determine if the new value (%V) is a double. If
not, the validation fails,-commandwon’t be executed, and the prior value of the entry field will be
restored.

SEE ALSO

epicsTypeNGo(1tcl)

71

	NSCL Epics support software
	Table of Contents
	List of Examples
	I. NSCL Epics support for Tcl/Tk (1tcl)
	NSCL Epics support
	Name
	DESCRIPTION
	Getting started

	epics tcl package
	Name
	Synopsis
	SUMMARY
	EXAMPLES
	OPEN ISSUES
	Issues with enumerated variable types

	BCM Meter widget
	Name
	Synopsis
	OPTIONS
	METHODS
	EXAMPLES
	SEE ALSO

	epicsButton
	Name
	Synopsis
	DESCRIPTION
	OPTIONS
	EXAMPLES

	epicsCommandButton
	Name
	Synopsis
	DESCRIPTION
	OPTIONS
	EXAMPLES

	Epics enumerated control
	Name
	Synopsis
	SUMMARY
	OPTIONS
	METHODS
	SEE ALSO

	epicsGraph
	Name
	Synopsis
	DESCRIPTION
	OPTIONS
	METHODS
	channelPairHistory objects
	OPTIONS
	METHODS

	blt::graph summary
	OPTIONS
	COMPONENTS
	axis
	element
	grid
	legend
	Pen
	postscript

	EXAMPLES

	Epics Label Widget
	Name
	Synopsis
	OPTIONS
	METHODS
	SEE ALSO

	epicsLabelWithUnits
	Name
	Synopsis
	OPTIONS
	METHODS
	SEE ALSO

	epicsLed
	Name
	Synopsis
	OPTIONS
	METHODS
	KNOWN ISSUES
	SEE ALSO

	epicsMeter
	Name
	Synopsis
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO

	epicsPullDown
	Name
	Synopsis
	DESCRIPTION
	OPTIONS
	METHODS
	EXAMPLES

	epicsStripChart
	Name
	Synopsis
	DESCRIPTION
	OPTIONS
	METHODS
	channelHistory OBJECTS
	channelHistory OPTIONS
	channelHistory METHODS

	BLT STRIPCHART
	Key Stripchart options
	Key Stripchart methods
	Stripchart components
	Stripchart axes
	Stripchart crosshairs
	Stripchart elements (traces)
	Stripchart grids
	Stripchart legends
	Stripchart Pens
	Stripchart Postcript output
	Stripchart Markers

	EXAMPLES
	Creating a simple stripchart
	Setting stripchart trace attributes
	Configuring the appearance of the plot.
	Adding titles
	A graph with several traces
	Accessing historical data

	SEE ALSO

	typeNGo bound to epics
	Name
	Synopsis
	SUMMARY
	OPTIONS
	METHODS
	EXAMPLES
	SEE ALSO

	epicsspinbox
	Name
	Synopsis
	OPTIONS
	METHODS

	Vertical meter widget
	Name
	Synopsis
	OPTIONS
	METHODS
	SEE ALSO

	LED Widget
	Name
	Synopsis
	OPTIONS
	METHODS
	SEE ALSO

	typeNGo compound widget
	Name
	Synopsis
	SUMMARY
	OPTIONS
	METHODS
	BINDINGS
	EXAMPLES
	SEE ALSO

