

PGI® User’s Guide
Parallel Fortran, C and C++
for Scientists and Engineers

The Portland Group™
STMicroelectronics
9150 SW Pioneer Court, Suite H
Wilsonville, OR 97070

While every precaution has been taken in the preparation of this document, The Portland Group™,
a wholly-owned subsidiary of STMicroelectronics, makes no warranty for the use of its products
and assumes no responsibility for any errors that may appear, or for damages resulting from the
use of the information contained herein. The Portland Group retains the right to make changes to
this information at any time, without notice. The software described in this document is distributed
under license from STMicroelectronics and may be used or copied only in accordance with the
terms of the license agreement. No part of this document may be reproduced or transmitted in any
form or by any means, for any purpose other than the purchaser's personal use without the express
written permission of The Portland Group.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this manual, The Portland Group was
aware of a trademark claim. The designations have been printed in caps or initial caps. Thanks is
given to the Parallel Tools Consortium and, in particular, to the High Performance Debugging
Forum for their efforts.

PGF95, PGF95, PGC++, Cluster Development Kit, CDK and The Portland Group are trademarks
and PGI, PGHPF, PGF77, PGCC, PGPROF, and PGDBG are registered trademarks of
STMicroelectronics, Inc. Other brands and names are the property of their respective owners.
The use of STLport, a C++ Library, is licensed separately and license, distribution and copyright
notice can be found in the online documentation for a given release of the PGI compilers and tools.

PGI User's Guide
Copyright © 1998 – 2000, The Portland Group, Inc.
Copyright © 2000 – 2005, STMicroelectronics, Inc.

All rights reserved.
Printed in the United States of America

Part Number: 2030-990-888-0603

First Printing: Release 1.7, June 1998
Second Printing: Release 3.0, January 1999
Third Printing: Release 3.1, September 1999
Fourth Printing: Release 3.2, September 2000
Fifth Printing: Release 4.0, May 2002
Sixth Printing: Release 5.0, June 2003
Seventh Printing: Release 5.1, November 2003
Eighth Printing Release 5.2, June 2004
Ninth Printing Release 6.0, March 2005

Technical support: trs@pgroup.com
Sales: sales@pgroup.com
Web: http://www.pgroup.com/

http://www.pgroup.com/

Table of Contents iii

Table of Contents
PREFACE..1

AUDIENCE DESCRIPTION..1
COMPATIBILITY AND CONFORMANCE TO STANDARDS...1
ORGANIZATION..2
HARDWARE AND SOFTWARE CONSTRAINTS ..3
CONVENTIONS ...4
RELATED PUBLICATIONS ...6

GETTING STARTED ..7

1.1 OVERVIEW ...7
1.2 INVOKING THE COMMAND-LEVEL PGI COMPILERS..8

1.2.1 Command-line Syntax..8
1.2.2 Command-line Options ..9
1.2.3 Fortran Directives and C/C++ Pragmas ..9

1.3 FILENAME CONVENTIONS ..10
1.3.1 Input Files ..10
1.3.2 Output Files..11

1.4 PARALLEL PROGRAMMING USING THE PGI COMPILERS ..13
1.4.1 Running SMP Parallel Programs..13
1.4.2 Running Data Parallel HPF Programs..14

1.5 USING THE PGI COMPILERS ON LINUX...15
1.5.1 Linux Header Files...15
1.5.2 Running Parallel Programs on Linux ...16

iv Table of Contents

1.6 USING THE PGI COMPILERS ON WINDOWS .. 16

OPTIMIZATION & PARALLELIZATION ... 19

2.1 OVERVIEW OF OPTIMIZATION.. 19
2.2 GETTING STARTED WITH OPTIMIZATIONS.. 21

2.3 LOCAL AND GLOBAL OPTIMIZATION USING −O .. 23
2.3.1 Scalar SSE Code Generation.. 25

2.4 LOOP UNROLLING USING −MUNROLL ... 25

2.5 VECTORIZATION USING −MVECT .. 27
2.5.1 Vectorization Sub-options ... 27

2.5.1.1 Assoc Option... 28
2.5.1.2 Cachesize Option .. 28
2.5.1.3 SSE Option ... 28
2.5.1.4 Prefetch Option ... 29

2.5.2 Vectorization Example Using SSE/SSE2 Instructions... 29

2.6 AUTO-PARALLELIZATION USING −MCONCUR ... 32
2.6.1 Auto-parallelization Sub-options ... 33

2.6.1.1 Altcode Option.. 33
2.6.1.2 Dist Option.. 33
2.6.1.3 Cncall Option.. 33

2.6.2 Auto-parallelization Example .. 34
2.6.3 Loops That Fail to Parallelize .. 35

2.6.3.1 Timing Loops.. 35
2.6.3.2 Scalars... 35
2.6.3.3 Scalar Last Values... 36

2.7 INTER-PROCEDURAL ANALYSIS AND OPTIMIZATION USING -MIPA.. 38

Table of Contents v

2.7.1 Building a Program Without IPA – Single Step...38
2.7.2 Building a Program Without IPA - Several Steps ..38
2.7.3 Building a Program Without IPA Using Make ..39
2.7.4 Building a Program with IPA...39
2.7.5 Building a Program with IPA - Single Step ...40
2.7.6 Building a Program with IPA - Several Steps ..41
2.7.7 Building a Program with IPA Using Make ..42
2.7.8 Questions about IPA ..42

2.8 DEFAULT OPTIMIZATION LEVELS ..43
2.9 LOCAL OPTIMIZATION USING DIRECTIVES AND PRAGMAS ..44
2.10 EXECUTION TIMING AND INSTRUCTION COUNTING ...45

COMMAND LINE OPTIONS...47

3.1 GENERIC PGI COMPILER OPTIONS ...53
3.2 C AND C++ -SPECIFIC COMPILER OPTIONS..106

FUNCTION INLINING ...113

4.1 INVOKING FUNCTION INLINING..113
4.1.1 Using an Inline Library ..114

4.2 CREATING AN INLINE LIBRARY..115
4.2.1 Working with Inline Libraries..115
4.2.2 Updating Inline Libraries - Makefiles ..116

4.3 ERROR DETECTION DURING INLINING ..117
4.4 EXAMPLES ...117
4.5 RESTRICTIONS ON INLINING ...117

vi Table of Contents

OPENMP DIRECTIVES FOR FORTRAN ... 119

5.1 PARALLELIZATION DIRECTIVES ... 119
5.2 PARALLEL ... END PARALLEL .. 120
5.3 CRITICAL ... END CRITICAL .. 123
5.4 MASTER ... END MASTER... 124
5.5 SINGLE ... END SINGLE... 125
5.6 DO ... END DO ... 126
5.7 BARRIER ... 129
5.8 DOACROSS ... 129
5.9 PARALLEL DO.. 130
5.10 SECTIONS … END SECTIONS.. 130
5.11 PARALLEL SECTIONS .. 131
5.12 ORDERED.. 132
5.13 ATOMIC... 132
5.14 FLUSH.. 133
5.15 THREADPRIVATE.. 133
5.16 RUN-TIME LIBRARY ROUTINES.. 134
5.17 ENVIRONMENT VARIABLES ... 136

OPENMP PRAGMAS FOR C AND C++ ... 137

6.1 PARALLELIZATION PRAGMAS .. 137
6.2 OMP PARALLEL .. 138
6.3 OMP CRITICAL .. 140
6.4 OMP MASTER.. 141
6.5 OMP SINGLE ... 142
6.6 OMP FOR... 143

Table of Contents vii

6.7 OMP BARRIER ...145
6.8 OMP PARALLEL FOR..146
6.9 OMP SECTIONS..146
6.10 OMP PARALLEL SECTIONS...147
6.11 OMP ORDERED ..148
6.12 OMP ATOMIC ..148
6.13 OMP FLUSH...149
6.14 OMP THREADPRIVATE...149
6.15 RUN-TIME LIBRARY ROUTINES ..149
6.16 ENVIRONMENT VARIABLES..152

OPTIMIZATION DIRECTIVES AND PRAGMAS ...155

7.1 ADDING DIRECTIVES TO FORTRAN...155
7.2 FORTRAN DIRECTIVE SUMMARY..156
7.3 SCOPE OF DIRECTIVES AND COMMAND LINE OPTIONS ...161
7.4 ADDING PRAGMAS TO C AND C++ ..163
7.5 C/C++ PRAGMA SUMMARY ..163
7.6 SCOPE OF C/C++ PRAGMAS AND COMMAND LINE OPTIONS ...166
7.7 PREFETCH DIRECTIVES ..170

LIBRARIES AND ENVIRONMENT VARIABLES ...173

8.1 USING BUILTIN MATH FUNCTIONS IN C/C++ ...173
8.2 CREATING AND USING SHARED OBJECT FILES...173
8.3 CREATING AND USING DYNAMIC-LINK LIBRARIES ON WINDOWS175
8.5 USING LIB3F...181
8.6 LAPACK, THE BLAS AND FFTS...181

viii Table of Contents

8.7 THE C++ STANDARD TEMPLATE LIBRARY ... 181
8.8 ENVIRONMENT VARIABLES ... 181

FORTRAN, C AND C++ DATA TYPES .. 185

9.1 FORTRAN DATA TYPES .. 185
9.1.1 Fortran Scalars ... 185
9.1.2 FORTRAN 77 Aggregate Data Type Extensions .. 187
9.1.3 Fortran 90 Aggregate Data Types (Derived Types)... 188

9.2 C AND C++ DATA TYPES .. 189
9.2.1 C and C++ Scalars .. 189
9.2.2 C and C++ Aggregate Data Types .. 191
9.2.3 Class and Object Data Layout.. 191
9.2.4 Aggregate Alignment... 192
9.2.5 Bit-field Alignment.. 193
9.2.6 Other Type Keywords in C and C++ .. 194

INTER-LANGUAGE CALLING.. 195

10.1 OVERVIEW OF CALLING CONVENTIONS... 195
10.2 INTER-LANGUAGE CALLING CONSIDERATIONS.. 195
10.3 FUNCTIONS AND SUBROUTINES ... 197
10.4 UPPER AND LOWER CASE CONVENTIONS, UNDERSCORES ... 197
10.5 COMPATIBLE DATA TYPES .. 197

10.5.1 Fortran Named Common Blocks ... 199
10.6 ARGUMENT PASSING AND RETURN VALUES.. 199

10.6.1 Passing by Value (%VAL)... 200
10.6.2 Character Return Values .. 200

Table of Contents ix

10.6.3 Complex Return Values ...201
10.7 ARRAY INDICES ...201
10.8 EXAMPLE - FORTRAN CALLING C ..202
10.9 EXAMPLE - C CALLING FORTRAN ..203
10.10 EXAMPLE - C ++ CALLING C..204
10.11 EXAMPLE - C CALLING C++ ..205
10.12 EXAMPLE - FORTRAN CALLING C++ ...206
10.13 EXAMPLE - C++ CALLING FORTRAN ...207
10.14 WINDOWS CALLING CONVENTIONS ...209

10.14.1 Windows Fortran Calling Conventions ..209
10.14.2 Symbol Name Construction and Calling Example...210
10.14.3 Using the Default Calling Convention ...211
10.14.4 Using the STDCALL Calling Convention ...212
10.14.5 Using the C Calling Convention ..212
10.14.6 Using the UNIX Calling Convention ...213

C++ NAME MANGLING ..215

11.1 TYPES OF MANGLING...216
11.2 MANGLING SUMMARY ...217

11.2.1 Type Name Mangling ..217
11.2.2 Nested Class Name Mangling ..217
11.2.3 Local Class Name Mangling ..217
11.2.4 Template Class Name Mangling ..218

RUN-TIME ENVIRONMENT ..219

A1.1 PROGRAMMING MODEL (X86) ..219

x Table of Contents

A1.2 FUNCTION CALLING SEQUENCE .. 219
A1.3 FUNCTION RETURN VALUES ... 222
A1.4 ARGUMENT PASSING .. 223
A2.1 PROGRAMMING MODEL (X86-64 LINUX) ... 227
A2.2 FUNCTION CALLING SEQUENCE .. 227
A2.3 FUNCTION RETURN VALUES ... 230
A2.4 ARGUMENT PASSING .. 231
A2.5 FORTRAN SUPPLEMENT... 234
A2.6 FORTRAN FUNDAMENTAL TYPES.. 235
A2.7 NAMING CONVENTIONS .. 236
A2.8 ARGUMENT PASSING AND RETURN CONVENTIONS... 236
A2.9 INTER-LANGUAGE CALLING.. 236

MESSAGES .. 241

B.1 DIAGNOSTIC MESSAGES.. 241
B.2 PHASE INVOCATION MESSAGES .. 242
B.3 FORTRAN COMPILER ERROR MESSAGES ... 242

B.3.1 Message Format .. 242
B.3.2 Message List.. 242

B.4 FORTRAN RUNTIME ERROR MESSAGES... 278
B.4.1 Message Format .. 278
B.4.2 Message List.. 279

C++ DIALECT SUPPORTED... 283

C.1 ANACHRONISMS ACCEPTED .. 283
C.2 NEW LANGUAGE FEATURES ACCEPTED .. 285

Table of Contents xi

C.3 THE FOLLOWING LANGUAGE FEATURES ARE NOT ACCEPTED...287
C.4 EXTENSIONS ACCEPTED IN NORMAL C++ MODE ...287
C.5 CFRONT 2.1 COMPATIBILITY MODE ...288
C.6 CFRONT 2.1/3.0 COMPATIBILITY MODE ...291

INDEX..293

LIST OF TABLES
Table P-1: PGI Compilers and Commands ...4
Table P-2: Processor Options..5
Table 1-1: Stop after Options, Inputs and Outputs..12
Table 2-1: Optimization and –O, –g and –M<opt> Options ...44
Table 3-1: Generic PGI Compiler Options ...47
Table 3-2: C and C++ -specific Compiler Options ...51
Table 3-3: –M Options Summary ..65
Table 3-4: Optimization and –O, –g, –Mvect, and –Mconcur Options...95
Table 5-1: Initialization of REDUCTION Variables ..122
Table 6-1: Initialization of Reduction Variables...140
Table 7-1: Fortran Directive Summary ...156
Table 7-2: C/C++ Pragma Summary..164
Table 9-1: Representation of Fortran Data Types ...185
Table 9-2: Real Data Type Ranges ...186
Table 9-3: Scalar Type Alignment ..187
Table 9-4: C/C++ Scalar Data Types ...189
Table 9-5: Scalar Alignment ...190
Table 10-1: Fortran and C/C++ Data Type Compatibility ...198
Table 10-2: Fortran and C/C++ Representation of the COMPLEX Type198

xii Table of Contents

Table 10-3: Calling Conventions Supported by the PGI Fortran Compilers 209
Table A-1: Register Allocation... 219
Table A-2: Standard Stack Frame... 220
Table A-3: Stack Contents for Functions Returning struct/union... 223
Table A-4: Integral and Pointer Arguments.. 224
Table A-5: Floating-point Arguments .. 224
Table A-6: Structure and Union Arguments ... 225
Table A-7: Register Allocation... 227
Table A-8: Standard Stack Frame... 228
Table A-9: Register Allocation for Example A-2... 232
Table A-10: Fortran Fundamental Types.. 235
Table A-11: Fortran and C/C++ Data Type Compatibility... 237
Table A-12: Fortran and C/C++ Representation of the COMPLEX Type.................................... 237

Table of Contents xiii

LIST OF FIGURES
Figure 9-1: Internal Padding in a Structure...193

Figure 9-2: Tail Padding in a Structure...194

Preface 1

Preface
This guide is part of a set of manuals that describe how to use The Portland Group (PGI) Fortran,
C, and C++ compilers and program development tools. In particular, these include the PGF77,
PGF95, PGHPF, PGC++, and PGCC ANSI C compilers, the PGPROF profiler, and the PGDBG
debugger. These compilers and tools work in conjunction with a 32-bit X86 or 64-bit X86-64
assembler and linker. You can use the PGI compilers and tools to compile, debug, optimize and
profile serial and parallel applications for X86 (Intel Pentium II/III/4/M, Intel Centrino, Intel
Xeon, AMD Athlon XP/MP) or X86-64 (AMD Athlon64/Opteron, Intel Pentium 4/Xeon EM64T)
processor-based systems.

This PGI User's Guide provides operating instructions for the command-level compilation
environment and general information about PGI’s implementation of the Fortran, C, and C++
languages. This guide does not teach the Fortran, C, or C++ programming languages.

Audience Description
This guide is intended for scientists and engineers using the PGI compilers. To use these
compilers, you should be aware of the role of high-level languages (e.g. Fortran, C, C++) and
assembly-language in the software development process and should have some level of
understanding of programming. The PGI compilers are available on a variety of X86 or X86-64
hardware platforms and operating systems. You need to be familiar with the basic commands
available on your system.

Finally, your system needs to be running a properly installed and configured version of the
compilers. For information on installing PGI compilers and tools, refer to the installation
instructions.

Compatibility and Conformance to Standards
For further information, refer to the following:

• American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

• ISO/IEC 1539 : 1991, Information technology – Programming Languages – Fortran, Geneva,
1991 (Fortran 90).

• ISO/IEC 1539 : 1997, Information technology – Programming Languages – Fortran, Geneva,
1997 (Fortran 95).

2 Preface

• Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

• High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston,
Texas (1993), http://www.crpc.rice.edu/HPFF.

• High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston,
Texas (1997), http://www.crpc.rice.edu/HPFF.

• OpenMP Fortran Application Program Interface, Version 1.1, November 1999,
http://www.openmp.org.

• OpenMP C and C++ Application Program Interface, Version 1.0, October 1998,
http://www.openmp.org.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

• American National Standard Programming Language C, ANSI X3.159-1989.

Organization
This manual is divided into the following chapters and appendices:

Chapter 1 Getting Started provides an introduction to the PGI compilers and
describes their use and overall features.

Chapter 2 Optimization & Parallelization describes standard optimization
techniques that, with little effort, allow users to significantly improve the
performance of programs.

Chapter 3 Command Line Options provides a detailed description of each command-
line option.

Chapter 4 Function Inlining describes how to use function inlining and shows how to
create an inline library.

Chapter 5 OpenMP Directives for Fortran provides a description of the OpenMP
Fortran parallelization directives and shows examples of their use.

Preface 3

Chapter 6 OpenMP Pragmas for C and C++ provides a description of the OpenMP
C and C++ parallelization pragmas and shows examples of their use.

Chapter 7 Optimization Directives and Pragmas provides a description of each
Fortran optimization directive and C/C++ optimization pragma, and shows
examples of their use.

Chapter 8 Libraries and Environment Variables discusses PGI support libraries,
shared object files, and environment variables that affect the behavior of
the PGI compilers.

Chapter 9 Fortran, C and C++ Data Types describes the data types that are
supported by the PGI Fortran, C, and C++ compilers.

Chapter 10 Inter-language Calling provides examples showing how to place C
Language calls in a Fortran program and Fortran Language calls in a C
program.

Chapter 11 C++ Name Mangling describes the name mangling facility and explains
the transformations of names of entities to names that include information
on aspects of the entity’s type and a fully qualified name.

Appendix A Run-time Environment describes the assembly language calling
conventions and examples of assembly language calls.

Appendix B Messages provides a list of compiler error messages.

Appendix C C++ Dialect Supported lists more details of the version of the C++
language that PGC++ supports.

Hardware and Software Constraints
This guide describes versions of the PGI compilers that produce assembly code for X86 and X86-
64 processor-based systems. Details concerning environment-specific values and defaults and
system-specific features or limitations are presented in the release notes sent with the PGI
compilers.

4 Preface

Conventions
The PGI User's Guide uses the following conventions:

italic is used for commands, filenames, directories, arguments, options and for
emphasis.

Constant Width is used in examples and for language statements in the text, including
assembly language statements.

[item1] square brackets indicate optional items. In this case item1 is optional.

{ item2 | item 3} braces indicate that a selection is required. In this case, you must select
either item2 or item3.

filename ... ellipsis indicate a repetition. Zero or more of the preceding item may occur.
In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown in the text of this guide using upper-
case characters and a reduced point size.

The following table lists the PGI compilers and tools and their corresponding commands:

Table P-1: PGI Compilers and Commands

Compiler Language Command

PGF77 FORTRAN 77 pgf77

PGF95 Fortran 90/95 pgf95

PGHPF High Performance Fortran pghpf

PGCC C ANSI and K&R C pgcc

PGC++ ANSI C++ with cfront features pgCC

PGDBG Source code debugger pgdbg

PGPROF Performance profiler pgprof

In general, the designation PGF95 is used to refer to The Portland Group’s Fortran 90/95
compiler, and pgf95 is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

Preface 5

For simplicity, examples of command-line invocation of the compilers generally reference the
pgf95 command and most source code examples are written in Fortran. Usage of the PGF77
compiler, whose features are a subset of PGF95, is similar. Usage of PGHPF, PGC++, and
PGCC ANSI C is consistent with PGF95 and PGF77, but there are command-line options and
features of these compilers that do not apply to PGF95 and PGF77 (and vice versa).

There are a wide variety of X86-compatible processors in use. All are supported by the PGI
compilers and tools. Most of these processors are forward-compatible, but not backward-
compatible. That means code compiled to target a given processor will not necessarily execute
correctly on a previous-generation processor. The most important processor types, along with a list
of the features utilized by the PGI compilers that distinguish them from a compatibility standpoint,
are listed in Table P-2:

Table P-2: Processor Options

 Prefetch SSE1 SSE2 32-bit 64-bit Scalar FP Default
AMD Athlon X x87

AMD Athlon XP/MP X X X x87

AMD Athlon64 X X X X X SSE/SSE2

AMD Opteron X X X X X SSE/SSE2

Intel Celeron X x87

Intel Pentium II X x87

Intel Pentium III X X X x87

Intel Pentium 4 X X X X x87

Intel Pentium M X X X X x87

Intel Centrino X X X X x87

Intel Pentium 4 EM64T X X X X X SSE/SSE2

Intel Xeon EM64T X X X X X SSE/SSE2

In this manual, the convention is to use “X86” to specify the group of processors in Table P-2 that
are listed “32-bit” but not “64-bit.” The convention is to use “X86-64” to specify the group of
processors that are listed as both “32-bit” and “64-bit.” X86 processor-based systems can run only
under 32-bit operating systems. X86-64 processor-based systems can run either 32-bit or
64-bit operating systems, and can execute all 32-bit X86 binaries in either case. X86-64 processors
have additional registers and 64-bit addressing capabilities that are utilized by the PGI compilers

6 Preface

and tools when operating under a 64-bit operating system. The prefetch, SSE1 and SSE2 processor
features further distinguish the various processors. Where such distinctions are important with
respect to a given compiler option or feature, it is explicitly noted in this manual.

Note that the default for performing scalar floating-point arithmetic is to use SSE/SSE2
instructions on AMD Opteron/Athlon64 or Intel EM64T targets running a 64-bit operating system.
This same code generation mode can be enabled on AMD Opteron/Athlon64 or Intel EM64T
targets running a 32-bit operating system, or on Pentium 4/Xeon/Centrino targets, by using the
–Mscalarsee option. See section 2.3.1, Scalar SSE Code Generation, for a detailed discussion of
this topic.

Related Publications
The following documents contain additional information related to the X86 and X86-64
architectures, and the compilers and tools available from The Portland Group.

• PGI Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, and HPF
statements, data types, input/output format specifiers, and additional reference material
related to use of the PGI Fortran compilers.

• System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

• System V Application Binary Interface X86-64 Architecture Processor Supplement,
http://www.x86-64.org/abi.pdf.

• Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• The C Programming Language by Kernighan and Ritchie (Prentice Hall).

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall,
1987).

• The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T
Bell Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

http://www.x86-64.org/abi.pdf

Getting Started 7

Chapter 1
Getting Started
This chapter describes how to use the PGI compilers. The command used to invoke a compiler,
for example the pgf95 command, is called a compiler driver. The compiler driver controls the
following phases of compilation: preprocessing, compiling, assembling, and linking. Once a file is
compiled and an executable file is produced, you can execute, debug, or profile the program on
your system. Executables produced by the PGI compilers are unconstrained, meaning they can be
executed on any compatible X86 or X86-64 processor-based system regardless of whether the
PGI compilers are installed on that system.

1.1 Overview
In general, using a PGI compiler involves three steps:

1. Produce a program in a file containing a .f extension or another appropriate extension
(see Section 1.3.1 Input Files). This may be a program that you have written or a
program that you are modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

The PGI compilers allow many variations on these general program development steps. These
variations include the following:

• Stop the compilation after preprocessing, compiling or assembling to save and examine
intermediate results.

• Provide options to the driver that control compiler optimization or that specify various
features or limitations.

• Include as input intermediate files such as preprocessor output, compiler output, or assembler
output.

8 Chapter 1

1.2 Invoking the Command-level PGI Compilers
To translate and link a Fortran, C, or C++ language program, the pgf77, pgf95, pghpf, pgcc,
and pgCC commands do the following:

• Preprocess the source text file

• Check the syntax of the source text

• Generate an assembly language file

• Pass control to the subsequent assembly and linking steps

For example, if you enter the following simple Fortran program in the file hello.f:

print *, “hello”
end

You can compile it from a shell prompt using the default pgf95 driver options.

PGI$ pgf95 hello.f
Linking:
PGI$

By default, the executable output is placed in the file a.out (a.exe on Windows). Use the –o option
to specify an output file name. To place the executable output in the file hello:

PGI$ pgf95 –o hello hello.f
Linking:
PGI$

To execute the resulting program, simply type the filename at the command prompt and press the
Return or Enter key on your keyboard:

PGI$ hello
 hello
PGI$

1.2.1 Command-line Syntax
The command-line syntax, using pgf95 as an example, is:

pgf95 [options] [path] filename [...]

Getting Started 9

Where:

options is one or more command-line options. Case is significant for options and
their arguments.

 The compiler drivers recognize characters preceded by a hyphen (-) as
command-line options. For example, the –Mlist option specifies that the
compiler creates a listing file (in the text of this manual we show
command-line options using a dash instead of a hyphen, for example
–Mlist). In addition, the pgCC command recognizes a group of characters
preceded by a plus sign (+) as command-line options.

 The order of options and the filename is not fixed. That is, you can place
options before and after the filename argument on the command line.
However, the placement of some options is significant, for example the –l
option.

 If two or more options contradict each other, the last one in the command
line takes precedence.

path is the pathname to the directory containing the file named by filename. If
you do not specify path for a filename, the compiler uses the current
directory. You must specify path separately for each filename not in the
current directory.

filename is the name of a source file, assembly-language file, object file, or library
to be processed by the compilation system. You can specify more than one
[path] f i lename.

1.2.2 Command-line Options
The command-line options control various aspects of the compilation process. For a complete
alphabetical listing and a description of all the command-line options, refer to Chapter 3,
Command Line Options.

1.2.3 Fortran Directives and C/C++ Pragmas
Fortran directives or C/C++ pragmas inserted in program source code allow you to alter the
effects of certain command-line options and control various aspects of the compilation process for
a specific routine or a specific program loop. For a complete alphabetical listing and a description
of all the Fortran directives and C/C++ pragmas, refer to Chapter 5, OpenMP Directives for

10 Chapter 1

Fortran, Chapter 6, OpenMP Pragmas for C and C++, and Chapter7, Optimization Directives
and Pragmas.

1.3 Filename Conventions
The PGI compilers use the filenames that you specify on the command line to find and to create
input and output files. This section describes the input and output filename conventions for the
phases of the compilation process.

1.3.1 Input Files
You can specify assembly-language files, preprocessed source files, Fortran/C/C++ source files,
object files, and libraries as inputs on the command line. The compiler driver determines the type
of each input file by examining the filename extensions. The drivers use the following
conventions:

filename.f indicates a Fortran source file.

filename.F indicates a Fortran source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.F95 indicates a Fortran 90/95 source file that can contain macros and
preprocessor directives (to be preprocessed).

filename.f90 indicates a Fortran 90/95 source file that is in freeform format.

filename.f95 indicates a Fortran 90/95 source file that is in freeform format.

filename.hpf indicates an HPF source file.

filename.c indicates a C source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.i indicates a pre-processed C or C++ source file.

filename.C indicates a C++ source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.cc indicates a C++ source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.s indicates an assembly-language file.

filename.o indicates an object file.

filename.a indicates a library of object files.

Getting Started 11

filename.so (Linux systems only) indicates a library of shared object files.

The driver passes files with .s extensions to the assembler and files with .o, .so and .a extensions
to the linker. Input files with unrecognized extensions, or no extension, are also passed to the
linker.

Files with a .F (Capital F) suffix are first preprocessed by the Fortran compilers and the output is
passed to the compilation phase. The Fortran preprocessor functions similar to cpp for C/C++
programs, but is built in to the Fortran compilers rather than implemented through an invocation
of cpp. This ensures consistency in the pre-processing step regardless of the type or revision of
operating system under which you’re compiling.

Any input files not needed for a particular phase of processing are not processed. For example, if
on the command line you use an assembly-language file (filename.s) and the –S option to stop
before the assembly phase, the compiler takes no action on the assembly-language file. Processing
stops after compilation and the assembler does not run (in this case compilation must have been
completed in a previous pass which created the .s file). Refer to the following section, Output
Files, for a description of the –S option.

In addition to specifying primary input files on the command line, code within other files can be
compiled as part of “include” files using the INCLUDE statement in a Fortran source file or the
preprocessor #include directive in Fortran source files that use a .F extension or C and C++
source files.

When linking a program module with a library, the linker extracts only those library modules that
the program needs. The compiler drivers link in several libraries by default. For more information
about libraries, refer to Chapter 8, Libraries.

1.3.2 Output Files
By default, an executable output file produced by one of the PGI compilers is placed in the file
a.out (a.exe on Windows). As shown in the preceding section, you can use the –o option to
specify the output file name.

If you use one of the options: –F (Fortran only), –P (C/C++ only), –S or –c, the compiler
produces a file containing the output of the last phase that completes for each input file, as
specified by the option supplied. The output file will be a preprocessed source file, an assembly-
language file, or an unlinked object file respectively. Similarly, the –E option does not produce a
file, but displays the preprocessed source file on the standard output. Using any of these options,
the –o option is valid only if you specify a single input file. If no errors occur during processing,
you can use the files created by these options as input to a future invocation of any of the PGI
compiler drivers. The following table lists the stop after options and the output files that the
compilers create when you use these options.

12 Chapter 1

Table 1-1: Stop after Options, Inputs and Outputs

Option Stop after Input Output

–E preprocessing Source files (must have .F
extension for Fortran)

preprocessed file to
standard out

–F preprocessing Source files (must have .F
extension, this option is not
valid for pgcc or pgCC)

preprocessed file – .f

–P preprocessing

Source files (this option is
not valid for pgf77, pgf95
or pghpf)

preprocessed file – .i

–S compilation Source files or preprocessed
files

assembly-language
file – .s

–c assembly Source files, preprocessed
files or assembly-language
files

unlinked object
file – .o

none linking Source files, preprocessed
files, assembly-language
files, object files or libraries

executable files
a.out

If you specify multiple input files or do not specify an object filename, the compiler uses the input
filenames to derive corresponding default output filenames of the following form, where filename
is the input filename without its extension:

filename.f indicates a preprocessed file (if you compiled a Fortran file using the
–F option).

filename.lst indicates a listing file from the –Mlist option.

filename.o indicates an object file from the –c option.

filename.s indicates an assembly-language file from the –S option.

Note: Unless you specify otherwise, the destination directory for any
output file is the current working directory. If the file exists in the
destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.

$ pgf95 –c proto.f proto1.F

Getting Started 13

This produces the output files proto.o and proto1.o, both of which are binary object files. Prior
to compilation, the file proto1.F is pre-processed because it has a .F filename extension.

1.4 Parallel Programming Using the PGI Compilers
The PGI compilers support three styles of parallel programming:

• Automatic shared-memory parallel programs compiled using the −Mconcur option to pgf77,
pgf95, pgcc, or pgCC — parallel programs of this variety can be run on shared-memory
parallel (SMP) systems such as dual-processor workstations.

• OpenMP shared-memory parallel programs compiled using the −mp option to pgf77,
pgf95, pgcc, or pgCC — parallel programs of this variety can be run on SMP systems.
Carefully coded user-directed parallel programs using OpenMP directives can often achieve
significant speed-ups on large numbers of processors on SMP server systems. Chapter 5,
OpenMP Directives for Fortran, and Chapter 6, OpenMP Pragmas for C and C++,
contain complete descriptions of user-directed parallel programming.

• Data parallel shared- or distributed-memory parallel programs compiled using the PGHPF
High Performance Fortran compiler — parallel programs of this variety can be run on SMP
workstations or servers, distributed-memory clusters of workstations, or clusters of SMP
workstations or servers. Coding a data parallel version of an application can be more work
than using OpenMP directives, but has the advantage that the resulting executable is usable
on all types of parallel systems regardless of whether shared memory is available. See the
PGHPF User’s Guide for a complete description of how to build and execute data parallel
HPF programs.

Note: the –Mconcur option is valid with the PGHPF compiler and can be
used to create hybrid shared/distributed-memory parallel programs.

In this manual, the first two types of parallel programs are collectively referred to as SMP parallel
programs. The third type is referred to as a data parallel program, or simply as an HPF program.

1.4.1 Running SMP Parallel Programs
When you execute an SMP parallel program, by default it will use only 1 processor. If you wish
to run on more than one processor, set the NCPUS environment variable to the desired number of
processors (subject to a maximum of 4 for PGI’s workstation-class products).

You can set this environment variable by issuing the following command:

% setenv NCPUS <number>

14 Chapter 1

in a shell command window under csh, or with

% NCPUS=<number>; export NCPUS

in sh, ksh, or BASH command window.

Note: If you set NCPUS to a number larger than the number of physical
processors, your program will execute very slowly.

A ready-made example of an auto-parallelizable benchmark is available at the URL:

 ftp://ftp.pgroup.com/pub/linpack.tar

Unpack it within shell command window using the command:

% tar xvf linpack.tar

and follow the instructions in the supplied README file.

In addition to the NCPUS environment variable, directive-based parallel programs built using the
OpenMP features of PGF77 and PGF95 recognize the OpenMP-standard environment variable
OMP_NUM_THREADS. Initialization and usage are identical to that for NCPUS. A ready-made
example of an OpenMP parallel program is available at the URL:

 ftp://ftp.pgroup.com/pub/matmul.tar

Unpack it within a shell command window using the command:

% tar xvf matmul.tar

and follow the instructions in the supplied README file. In addition to showing the OpenMP
capabilities of PGF77 and PGF95, this example also further illustrates auto-parallelization and
provides a brief glimpse of the capabilities of the PGHPF data parallel compiler on SMP systems.

1.4.2 Running Data Parallel HPF Programs
When you execute an HPF program, by default it will use only one processor. If you wish to run
on more than one processor, use the −pghpf −np runtime option. For example, to compile and run
the hello.f example defined above on one processor, you would issue the following commands:

% pghpf –o hello hello.f
Linking:
% hello

Getting Started 15

 hello
%

To execute it on two processors, you would issue the following commands:

% hello -pghpf -np 2
 hello
%

Note: If you specify a number larger than the number of physical
processors, your program will execute very slowly.

Note that you still only see a single “hello” printed to your screen. This is because HPF is a
single-threaded model, meaning that all statements execute with the same semantics as if they
were running in serial. However, parallel statements or constructs operating on explicitly
distributed data are in fact executed in parallel. The programmer must manually insert compiler
directives to cause data to be distributed to the available processors. See the PGHPF User’s
Guide and The High Performance Fortran Handbook for more details on constructing and
executing data parallel programs on shared-memory or distributed-memory cluster systems using
PGHPF.

Several ready-made examples of data parallel HPF programs are available at the URL:

 ftp://ftp.pgroup.com/pub/examples

In particular, the matrix multiply example matmul.tar is a good example to use. Unpack it
within a shell command window using the command:

% tar xvf matmul.tar

and follow the instructions in the supplied README file. Also available at this URL are HPF
implementations of several of the NAS Parallel Benchmarks.

1.5 Using the PGI Compilers on Linux

1.5.1 Linux Header Files
The Linux system header files contain many GNU gcc extensions. Many of these extensions are
supported. This should allow the PGCC C and C++ compilers to compile most programs
compilable with the GNU compilers. A few header files not interoperable with previous revisions
of the PGI compilers have been rewritten and are included in $PGI/linux86/include. These files
are: sigset.h, asm/byteorder.h, stddef.h, asm/posix_types.h and others. Also, PGI’s version of
stdarg.h should support changes in newer versions of Linux.

16 Chapter 1

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of
these include files are found before the system versions. This will happen by default unless you
explicitly add a –I option that references one of the system include directories.

1.5.2 Running Parallel Programs on Linux
You may encounter difficulties running auto-parallel or OpenMP programs on Linux systems
when the per-thread stack size is set to the default (2MB). If you have unexplained failures, please
try setting the environment variable MPSTKZ to a larger value, such as 8MB. This can be
accomplished with the command:

 % setenv MPSTKZ 8M

in csh, or with

 % MPSTKZ=8M; export MPSTKZ

in bash, sh, or ksh.

If your program is still failing, you may be encountering the hard 8 MB limit on main process
stack sizes in Linux. You can work around the problem by issuing the command:

 % limit stacksize unlimited

in csh, or

 % ulimit -s unlimited

in bash, sh, or ksh.

1.6 Using the PGI Compilers on Windows
On Windows, the tools that ship with the PGI compilers include a full-featured shell command
environment. After installation, you should have a PGI icon on your Windows desktop. Double-
left-click on this icon to cause an instance of the BASH command shell to appear on your screen.
Working within BASH is very much like working within the sh or ksh shells on a Linux system,
but in addition BASH has a command history feature similar to csh and several other unique
features. Shell programming is fully supported. A complete BASH User’s Guide is available
through the PGI online manual set. Select “PGI Workstation” under Start->Programs and double-
left-click on the documentation icon to see the online manual set. You must have a web browser
installed on your system in order to read the online manuals.

The BASH shell window is pre-initialized for usage of the PGI compilers, so there is no need to
set environment variables or modify your command path when the command window comes up.

Getting Started 17

In addition to the PGI compiler commands referenced above, within BASH you have access to
over 100 common commands and utilities, including but not limited to the following:

vi emacs make

tar / untar gzip / gunzip ftp

sed grep / egrep / fgrep awk

cat cksum cp

date diff du

find kill ls

more / less mv printenv / env

rm / rmdir touch wc

If you are familiar with program development in a Linux environment, editing, compiling, and
executing programs within BASH will be very comfortable. If you have not previously used such
an environment, you should take time to familiarize yourself with either the vi or emacs editors
and with makefiles. The emacs editor has an extensive online tutorial, which you can start by
bringing up emacs and selecting the appropriate option under the pull-down help menu. You can
get a thorough introduction to the construction and use of makefiles through the online Makefile
User’s Guide. A simple example makefile is included in the Linpack100 benchmark example.

Optimization & Parallelization 19

Chapter 2
Optimization & Parallelization
Source code that is readable, maintainable, and produces correct results is not always organized
for efficient execution. Normally, the first step in the program development process involves
producing code that executes and produces the correct results. This first step usually involves
compiling without much worry about optimization. After code is compiled and debugged, code
optimization and parallelization become an issue. Invoking one of the PGI compiler commands
with certain options instructs the compiler to generate optimized code. Optimization is not always
performed since it increases compilation time and may make debugging difficult. However,
optimization produces more efficient code that usually runs significantly faster than code that is
not optimized.

The compilers optimize code according to the specified optimization level. Using the –O,
–Mvect, and –Mconcur options, you specify the optimization levels. In addition, several additional
–M<pgflag> switches can be used to control specific types of optimization and parallelization.

This chapter describes the optimization options and describes how to choose optimization options
to use with the PGI compilers. Chapter 4, Function Inlining, describes how to use the function
inlining options.

2.1 Overview of Optimization
In general, optimization involves using transformations and replacements that generate more
efficient code. This is done by the compiler and involves replacements that are independent of the
particular target processor’s architecture as well as replacements that take advantage of the
X86 or X86-64 architecture, instruction set and registers. For the discussion in this and the
following chapters, optimization is divided into the following categories:

Local Optimization

This optimization is performed on a block-by-block basis within a program’s basic blocks. A
basic block is a sequence of statements, in which the flow of control enters at the beginning and
leaves at the end without the possibility of branching, except at the end. The PGI compilers
perform many types of local optimization including: algebraic identity removal, constant folding,
common sub-expression elimination, pipelining, redundant load and store elimination, scheduling,
strength reduction, and peephole optimizations.

20 Chapter 2

Global Optimization
This optimization is performed on code over all its basic blocks. The optimizer performs control-
flow and data-flow analysis for an entire program. All loops, including those formed by IFs and
GOTOs are detected and optimized. Global optimization includes: constant propagation, copy
propagation, dead store elimination, global register allocation, invariant code motion, and
induction variable elimination.

Loop Optimization: Unrolling, Vectorization, and Parallelization
The performance of certain classes of loops may be improved through vectorization or unrolling
options. Vectorization transforms loops to improve memory access performance and make use of
packed SSE instructions which perform the same operation on multiple data items concurrently.
Unrolling replicates the body of loops to reduce loop branching overhead and provide better
opportunities for local optimization and scheduling of instructions. Performance for loops on
systems with multiple processors may also improve using the parallelization features of the PGI
compilers.

Inter-Procedural Analysis and Optimization (IPA)
Interprocedural analysis allows use of information across function call boundaries to perform
optimizations that would otherwise be unavailable. For example, if the actual argument to a
function is in fact a constant in the caller, it may be possible to propagate that constant into the
callee and perform optimizations that are not valid if the dummy argument is treated as a variable.
A wide range of optimizations are enabled or improved by using IPA, including but not limited to
data alignment optimizations, argument removal, constant propagation, pointer disambiguation,
pure function detection, F90/F95 array shape propagation, data placement, vestigial function
removal, automatic function inlining, inlining of functions from pre-compiled libraries, and
interprocedural optimization of functions from pre-compiled libraries.

Function Inlining

This optimization allows a call to a function to be replaced by a copy of the body of that function.
This optimization will sometimes speed up execution by eliminating the function call and return
overhead. Function inlining may also create opportunities for other types of optimization.
Function inlining is not always beneficial. When used improperly it may increase code size and
generate less efficient code.

Profile-Feedback Optimization (PFO)
Profile-feedback optimization makes use of information from a trace file produced by specially
instrumented executables which capture and save information on branch frequency, function and
subroutine call frequency, semi-invariant values, loop index ranges, and other input data

Optimization & Parallelization 21

dependent information that can only be collected dynamically during execution of a program. By
definition, use of profile-feedback optimization is a two-phase process: compilation and execution
of a specially-instrumented executable, followed by a subsequent compilation which reads a trace
file generated during the first phase and uses the information in the trace file to guide compiler
optimizations.

2.2 Getting Started with Optimizations
Your first concern should be getting your program to execute and produce correct results. To get
your program running, start by compiling and linking without optimization. Use the optimization
level –O0 or select –g to perform minimal optimization. At this level, you will be able to debug
your program easily and isolate any coding errors exposed during porting to X86 or X86-64
platforms.

If you want to get started quickly with optimization, a good set of options to use with any of the
PGI compilers is –fastsse –Mipa=fast. For example:

$ pgf95 –fastsse –Mipa=fast prog.f

For all of the PGI Fortran, C, and C++ compilers, this option will generally produce code that is
well-optimized without the possibility of significant slowdowns due to pathological cases. The
−fastsse option is an aggregate option that includes a number of individual PGI compiler options;
which PGI compiler options are included depends on the target for which compilation is
performed. The –Mipa=fast option invokes interprocedural analysis including several IPA
suboptions.

For C++ programs, add −Minline=levels:10 −−no_exceptions:

$ pgCC –fastsse –Mipa=fast –Minline=levels:10 ––no_exceptions prog.cc

By experimenting with individual compiler options on a file-by-file basis, further significant
performance gains can sometimes be realized. However, individual optimizations can sometimes
cause slowdowns depending on coding style and must be used carefully to ensure performance
improvements result. In addition to –fastsse, the optimization flags most likely to further improve
performance are –O3, –Mpfi/–Mpfo, –Minline, and on targets with multiple processors
–Mconcur.

Three other options which are extremely useful are –help, –Minfo, and –dryrun.

You can see a specification of any command-line option by invoking any of the PGI compilers
with –help in combination with the option in question, without specifying any input files.

22 Chapter 2

For example:

$ pgf95 –help –fastsse
Reading rcfile /usr/pgi_rel/linux86-64/6.0/bin/.pgf95rc
-fastsse == -fast -Mvect=sse -Mscalarsse -Mcache_align –Mflushz
-fast Common optimizations: -O2 -Munroll=c:1 -Mnoframe -Mlre
. . .

Or to see the full functionality of –help itself, which can return information on either an individual
option or groups of options by type:

$ pgf95 –help –help
Reading rcfile /usr/pgi_rel/linux86-64/6.0/bin/.pgf95rc
-help[=groups|asm|debug|language|linker|opt|other|overall|
 phase|prepro|suffix|switch|target|variable]

The –Minfo option can be used to display compile-time optimization listings. When this option is
used, the PGI compilers will issue informational messages to stdout as compilation proceeds.
From these messages, you can determine which loops are optimized using unrolling, SSE/SSE2
instructions, vectorization, parallelization, interprocedural optimizations and various
miscellaneous optimizations. You can also see where and whether functions are inlined.

The –dryrun option can be useful as a diagnostic tool if you need to see the steps used by the
compiler driver to pre-process, compile, assemble and link in the presence of a given set of
command line inputs. When you specify the –dryrun option, these steps will be printed to stdout
but will not actually be performed. For example, this allows inspection of the default and user-
specified libraries that are searched during the link phase, and the order in which they are
searched by the linker.

The remainder of this chapter describes the –O options, the loop unroller option –Munroll, the
vectorizer option –Mvect, the auto-parallelization option –Mconcur, and the inter-procedural
analysis optimization –Mipa, and the profile-feedback instrumentation (–Mpfi) and optimization
(–Mpfo) options. Usually, you should be able to get very near optimal compiled performance
using some combination of these switches. The following overview will help if you are just
getting started with one of the PGI compilers, or wish to experiment with individual
optimizations. Complete specifications of each of these options are listed in Chapter 3,
Command Line Options.

The chapters that follow provide more detailed information on other –M<pgflag> options that
control specific optimizations, including function inlining. Explicit parallelization through the
use of OpenMP directives or pragmas is invoked using the –mp option, described in detail in
Chapter 5, OpenMP Directives for Fortran, and Chapter 6, OpenMP Pragmas for C and C++.

Optimization & Parallelization 23

2.3 Local and Global Optimization using −O
Using the PGI compiler commands with the –Olevel option, you can specify any of the following
optimization levels (the capital O is for Optimize):

–O0 level-zero specifies no optimization. A basic block is generated for each
Fortran statement.

–O1 level-one specifies local optimization. Scheduling of basic blocks is
performed. Register allocation is performed.

–O2 level-two specifies global optimization. This level performs all level-one
local optimization as well as level-two global optimization.

–O3 level-three specifies aggressive global optimization. This level performs
all level-one and level-two optimizations and enables more aggressive
hoisting and scalar replacement optimizations that may or may not be
profitable.

Level-zero optimization specifies no optimization (–O0). At this level, the compiler generates a
basic block for each Fortran statement. This level is useful for the initial execution of a program.
Performance will almost always be slowest using this optimization level. Level-zero is useful for
debugging since there is a direct correlation between the Fortran program text and the code
generated.

Level-one optimization specifies local optimization (–O1). The compiler performs scheduling of
basic blocks as well as register allocation. This optimization level is a good choice when the code
is very irregular; that is it contains many short statements containing IF statements and the
program does not contain loops (DO or DO WHILE statements). For certain types of code, this
optimization level may perform better than level-two (–O2) although this case rarely occurs.

The PGI compilers perform many different types of local optimizations, including but not limited
to:

• Algebraic identity removal

• Constant folding

• Common subexpression elimination

• Local register optimization

• Peephole optimizations

• Redundant load and store elimination

• Strength reductions

24 Chapter 2

Level-two optimization (–O2 or –O) specifies global optimization. The –fast option generally will
specify global optimization; however, the –fast switch will vary from release to release depending
on a reasonable selection of switches for any one particular release. The –O or –O2 level
performs all level-one local optimizations as well as global optimizations. Control flow analysis is
applied and global registers are allocated for all functions and subroutines. Loop regions are given
special consideration. This optimization level is a good choice when the program contains loops,
the loops are short, and the structure of the code is regular.

The PGI compilers perform many different types of global optimizations, including but not
limited to:

• Branch to branch elimination

• Constant propagation

• Copy propagation

• Dead store elimination

• Global register allocation

• Invariant code motion

• Induction variable elimination

You select the optimization level on the command line. For example, level-two optimization
results in global optimization, as shown below:

$ pgf95 –O2 prog.f

Specifying –O on the command-line without a level designation is equivalent to –O2. The default
optimization level changes depending on which options you select on the command line. For
example, when you select the –g debugging option, the default optimization level is set to level-
zero (–O0). However, you can override this default by placing –Olevel option after –g on the
command-line if you need to debug optimized code. Refer to Section 2.8, Default Optimization
Levels, for a description of the default levels.

As noted above, the –fast option includes –O2 on all X86 and X86-64 targets. If you wish to
override this with –O3 while maintaining all other elements of –fast, simply compile as follows:

$ pgf95 -fast –O3 prog.f

Optimization & Parallelization 25

2.3.1 Scalar SSE Code Generation
For all processors prior to Intel Pentium 4 and AMD Opteron/Athlon64, for example Pentium III
and AthlonXP, scalar floating-point arithmetic as generated by the PGI Workstation compilers is
performed using x87 floating-point stack instructions. With the advent of SSE/SSE2 instructions
on Pentium 4 and Opteron/Athlon64, it is possible to perform all scalar floating-point arithmetic
using SSE/SSE2 instructions. In most cases, this is beneficial from a performance standpoint.

The default on Pentium 4 (–tp p7 targets) or on Opteron/Athlon64 running a 32-bit operating
system (–tp k8-32 targets) is to use x87 instructions for scalar floating-point arithmetic. You can
override this default using the –Mscalarsee or –fastsse options. The default on Opteron/Athlon64
or Intel EM64T processors running a 64-bit operating system (–tp k8-64 and –tp p7-64 targets) is
to use SSE/SSE2 instructions for scalar floating-point arithmetic. The only way to override this
default on Opteron/Athlon64 running a 64-bit operating system is to specify a 32-bit target (for
example –tp k8-32). In particular, there is currently no way to use x87 instructions and also
leverage the additional registers and 64-bit addressing capabilities of AMD Opteron/Athlon64 or
Intel EM64T processors.

Note that there can be significant arithmetic differences between calculations performed using
x87 instructions versus SSE/SSE2. By default, all floating-point data is promoted to IEEE 80-bit
format when stored on the x87 floating-point stack, and all x87 operations are performed register-
to-register in this same format. Values are converted back to IEEE 32-bit or IEEE 64-bit when
stored back to memory (for REAL/float and DOUBLE PRECISION/double data respectively).
The default precision of the x87 floating-point stack can be reduced to IEEE 32-bit or IEEE 64-bit
globally by compiling the main program with the –pc {32 | 64} option to the PGI Workstation
compilers, which is described in detail in Chapter 3, Command-line Options. However, there is no
way to ensure that operations performed in mixed precision will match those produced on a
traditional load-store RISC/UNIX system which implements IEEE 64-bit and IEEE 32-bit
registers and associated floating-point arithmetic instructions.

In contrast, arithmetic results produced on a Pentium 4/Xeon, Opteron/Athlon64 or EM64T will
usually closely match or be identical to those produced on a traditional RISC/UNIX system if all
scalar arithmetic is performed using SSE/SSE2 instructions (–fastsse or –Mscalarsse). You
should keep this in mind when porting applications to and from systems which support both x87
and full SSE/SSE2 floating-point arithmetic. Many subtle issues can arise which affect your
numerical results, sometimes to several digits of accuracy.

2.4 Loop Unrolling using −Munroll
This optimization unrolls loops, executing multiple instances of the loop during each iteration.
This reduces branch overhead, and can improve execution speed by creating better opportunities
for instruction scheduling. A loop with a constant count may be completely unrolled or partially
unrolled. A loop with a non-constant count may also be unrolled. A candidate loop must be an

26 Chapter 2

innermost loop containing one to four blocks of code. The following shows the use of the
–Munroll option:

$ pgf95 –Munroll prog.f

The –Munroll option is included as part of –fast and –fastsse on all X86 and X86-64 targets. The
loop unroller expands the contents of a loop and reduces the number of times a loop is executed.
Branching overhead is reduced when a loop is unrolled two or more times, since each iteration of
the unrolled loop corresponds to two or more iterations of the original loop; the number of branch
instructions executed is proportionately reduced. When a loop is unrolled completely, the loop’s
branch overhead is eliminated altogether.

Loop unrolling may be beneficial for the instruction scheduler. When a loop is completely
unrolled or unrolled two or more times, opportunities for improved scheduling may be presented.
The code generator can take advantage of more possibilities for instruction grouping or filling
instruction delays found within the loop. Examples 2-1 and 2-2 show the effect of code unrolling
on a segment that computes a dot product.

REAL*4 A(100), B(100), Z
INTEGER I
DO I=1, 100
 Z = Z + A(i) * B(i)
END DO
END

Example 2-1: Dot Product Code

REAL*4 A(100), B(100), Z
INTEGER I
DO I=1, 100, 2
 Z = Z + A(i) * B(i)
 Z = Z + A(i+1) * B(i+1)
END DO
END

Example 2-2: Unrolled Dot Product Code

Using the –Minfo option, the compiler informs you when a loop is being unrolled. For example, a
message indicating the line number, and the number of times the code is unrolled, similar to the
following will display when a loop is unrolled:

dot:
 5, Loop unrolled 5 times

Optimization & Parallelization 27

Using the c:<m> and n:<m> sub-options to –Munroll, or using –Mnounroll, you can control
whether and how loops are unrolled on a file-by-file basis. Using directives or pragmas as
specified in Chapter 7, Optimization Directives and Pragmas, you can precisely control whether
and how a given loop is unrolled. See Chapter 3, Command Line Options, for a detailed
description of the –Munroll option.

2.5 Vectorization using −Mvect
The –Mvect option is included as part of –fastsse on all X86 and X86-64 targets. If your program
contains computationally intensive loops, the –Mvect option be helpful. If in addition you
specify –Minfo, and your code contains loops that can be vectorized, the compiler reports
relevant information on the optimizations applied.

When a PGI compiler command is invoked with the –Mvect option, the vectorizer scans code
searching for loops that are candidates for high-level transformations such as loop distribution,
loop interchange, cache tiling, and idiom recognition (replacement of a recognizable code
sequence, such as a reduction loop, with optimized code sequences or function calls). When the
vectorizer finds vectorization opportunities, it internally rearranges or replaces sections of loops
(the vectorizer changes the code generated; your source code’s loops are not altered). In addition
to performing these loop transformations, the vectorizer produces extensive data dependence
information for use by other phases of compilation and detects opportunities to use vector or
packed Streaming SIMD Extensions (SSE/SSE2) instructions on processors where these are
supported.

The –Mvect option can speed up code which contains well-behaved countable loops which
operate on large REAL, REAL*4, REAL*8, INTEGER*4, COMPLEX or COMPLEX DOUBLE arrays in
Fortran and their C/C++ counterparts. However, it is possible that some codes will show a
decrease in performance when compiled with –Mvect due to the generation of conditionally
executed code segments, inability to determine data alignment, and other code generation factors.
For this reason, it is recommended that you check carefully whether particular program units or
loops show improved performance when compiled with this option enabled.

2.5.1 Vectorization Sub-options
The vectorizer performs various operations that can be controlled by arguments to the –Mvect
command line option. The following sections describe these arguments that affect the operation of
the vectorizer. In addition, these vectorizer operations can be controlled from within code using
directives and pragmas. For details on the use of directives and pragmas, refer to Chapter 7,
Optimization Directives and Pragmas.
The vectorizer performs the following operations:

• Inner-loop, and outer-loop distribution

28 Chapter 2

• Loop interchange

• Memory-hierarchy (cache tiling) optimizations

• Generation of SSE, SSE2 and prefetch instructions on processors where these are supported

By default, –Mvect without any sub-options is equivalent to:

–Mvect=assoc,cachesize:262144

This enables the options for nested loop transformation and various other vectorizer options.
These defaults may vary depending on the target system.

The vectorizer performs high-level loop transformations on countable loops. A loop is countable
if the number of iterations is set only before loop execution and cannot be modified during loop
execution. These transformations, which include loop distribution, loop splitting, loop
interchange, and cache tiling allow the resulting loop to be optimized more completely, and often
result in more effective use of machine resources, such as registers.

2.5.1.1 Assoc Option
The option –Mvect=assoc instructs the vectorizer to perform associativity conversions that can
change the results of a computation due to roundoff error (–Mvect=noassoc disables this option).
For example, a typical optimization is to change one arithmetic operation to another arithmetic
operation that is mathematically correct, but can be computationally different and generate faster
code. This option is provided to enable or disable this transformation, since roundoff error for
such associativity conversions may produce unacceptable results.

2.5.1.2 Cachesize Option
The option –Mvect=cachesize:n instructs the vectorizer to tile nested loop operations assuming a
data cache size of n bytes. By default, the vectorizer attempts to tile nested loop operations, such
as matrix multiply, using multi-dimensional strip-mining techniques to maximize re-use of items
in the data cache.

2.5.1.3 SSE Option
The option –Mvect=sse instructs the vectorizer to automatically generate packed SSE, SSE2
(streaming SIMD extensions) and prefetch instructions when vectorizable loops are encountered.
SSE instructions, first introduced on Pentium III and AthlonXP processors, operate on single-
precision floating-point data, and hence apply only to vectorizable loops that operate on single-
precision floating-point data. SSE2 instructions, first introduced on Pentium 4, Xeon and Opteron
processors, operate on double-precision floating-point data. Prefetch instructions, first introduced
on Pentium III and AthlonXP processors, can be used to improve the performance of vectorizable

Optimization & Parallelization 29

loops that operate on either 32-bit or 64-bit floating-point data. See table P-2 for a concise list of
processors that support SSE, SSE2 and prefetch instructions.

Note: Programs units compiled with –Mvect=sse will not execute on Pentium, Pentium
Pro, Pentium II or first generation AMD Athlon processors. They will only execute
correctly on Pentium III, Pentium 4, Xeon, AthlonXP, Athlon64 and Opteron systems
running an SSE-enabled operating system.

2.5.1.4 Prefetch Option
The option –Mvect=prefetch instructs the vectorizer to automatically generate prefetch
instructions when vectorizable loops are encountered, even in cases where SSE or SSE2
instructions are not generated. Usually, explicit prefetching is not necessary on Pentium 4, Xeon
and Opteron because these processors support hardware prefetching; nonetheless, it sometimes
can be worthwhile to experiment with explicit prefetching.

Note: Program units compiled with –Mvect=prefetch will not execute correctly on
Pentium, Pentium Pro, or Pentium II processors. They will execute correctly only on
Pentium III, Pentium 4, Xeon, AthlonXP, Athlon64 or Opteron systems. In addition, the
prefetchw instruction is only supported on AthlonXP, Athlon64 or Opteron systems
and can cause instruction faults on non-AMD processors. For this reason, the PGI
compilers do not generate prefetchw instructions by default on any target.

In addition to these sub-options to –Mvect, several other sub-options are supported. See the
description of –Mvect in Chapter 7, Command-line Options, for a detailed description of all
available sub-options.

2.5.2 Vectorization Example Using SSE/SSE2 Instructions
One of the most important vectorization options is –Mvect=sse. This section contains an example
of the use and potential effects of –Mvect=sse.

When the compiler switch –Mvect=sse is used, the vectorizer in the PGI Workstation compilers
automatically uses SSE and SSE2 instructions where possible when targeting processors where
these are supported. This capability is supported by all of the PGI Fortran, C and C++ compilers.
See table P-2 for a complete specification of which X86 and X86-64 processors support SSE and
SSE2 instructions. Using –Mvect=sse, performance improvements of up to two times over
equivalent scalar code sequences are possible.

In the program in example 2-3, the vectorizer recognizes the vector operation in subroutine 'loop'
when the compiler switch –Mvect=sse is used. This example shows the compilation,
informational messages, and runtime results using the SSE instructions on an AMD Opteron
processor-based system, along with issues that affect SSE performance.

30 Chapter 2

First note that the arrays in Example 2-3 are single-precision and that the vector operation is done
using a unit stride loop. Thus, this loop can potentially be vectorized using SSE instructions on
any processor that supports SSE or SSE2 instructions. SSE operations can be used to operate on
pairs of single-precision floating-point numbers, and do not apply to double-precision
floating-point numbers. SSE2 instructions can be used to operate on quads of single-precision
floating-point numbers or on pairs of double-precision floating-point numbers.

Loops vectorized using SSE or SSE2 instructions operate much more efficiently when processing
vectors that are aligned to a cache-line boundary. You can cause unconstrained data objects of
size 16 bytes or greater to be cache-aligned by compiling with the –Mcache_align switch. An
unconstrained data object is a data object that is not a common block member and not a member
of an aggregate data structure.

Note: In order for stack-based local variables to be properly aligned, the main program
or function must be compiled with –Mcache_align.

The –Mcache_align switch has no effect on the alignment of Fortran allocatable or automatic
arrays. If you have arrays that are constrained, for example vectors that are members of Fortran
common blocks, you must specifically pad your data structures to ensure proper cache alignment;
–Mcache_align causes only the beginning address of each common block to be cache-aligned.

The following examples show results of compiling the example code with and without
–Mcache_align.

 program vector_op
 parameter (N = 9999)
 real*4 x(n),y(n),z(n),w(n)
 do i = 1,n
 y(i) = i
 z(i) = 2*i
 w(i) = 4*i
 enddo
 do j = 1, 200000
 call loop(x,y,z,w,1.0e0,n)
 enddo
 print*,x(1),x(771),x(3618),x(6498),x(9999)
 end

Optimization & Parallelization 31

 subroutine loop(a,b,c,d,s,n)
 integer i,n
 real*4 a(n),b(n),c(n),d(n),s
 do i = 1,n
 a(i) = b(i) + c(i) – s * d(i)
 enddo
 end

Example 2-3: Vector operation using SSE instructions

Assume the above program is compiled as follows:

 % pgf95 -fast -Minfo vadd.f
 vector_op:
 4, Loop unrolled 4 times
 loop:
 18, Loop unrolled 4 times

Following is the result if the generated executable is run and timed on a standalone AMD Opteron
2.2 Ghz system:

 % /bin/time a.out
 -1.000000 -771.000 -3618.000 -6498.00 -9999.00

 5.15user 0.00system 0:05.16 elapsed 99%CPU

Now, recompile with SSE vectorization enabled:

% pgf95 -fast –Mvect=sse -Minfo vadd.f
vector_op:
 4, Unrolling inner loop 8 times
 Loop unrolled 7 times (completely unrolled)
loop:
 18, Generating vector sse code for inner loop
 Generated 3 prefetch instructions for this loop

Note the informational message indicating that the loop has been vectorized and SSE instructions
have been generated. The second part of the informational message notes that prefetch
instructions have been generated for 3 loads to minimize latency of transfers of data from main
memory.

32 Chapter 2

Executing again, you should see results similar to the following:

 % /bin/time a.out
 -1.000000 -771.000 -3618.00 -6498.00 -9999.0

 3.55user 0.00system 0:03.56elapsed 99%CPU

The result is a speed-up of 45% over the equivalent scalar (i.e. non-SSE) version of the program.
Speed-up realized by a given loop or program can vary widely based on a number of factors:

• Performance improvement using vector SSE or SSE2 instructions is most effective when the
vectors of data are resident in the data cache.

• If data is aligned properly, performance will be better in general than when using vector SSE
operations on unaligned data.

• If the compiler can guarantee that data is aligned properly, even more efficient sequences of
SSE instructions can be generated.

• SSE2 vector instructions can operate on 4 single-precision elements concurrently, but only 2
double-precision elements. As a result, the efficiency of loops that operate on single-
precision data can be higher.

Note: Compiling with –Mvect=sse can result in numerical differences from the
generated executable. Certain vectorizable operations, for example dot products, are
sensitive to order of operations and the associative transformations necessary to enable
vectorization (or parallelization).

2.6 Auto-Parallelization using −Mconcur
With the −Mconcur option the compiler scans code searching for loops that are candidates for
auto-parallelization. –Mconcur must be used at both compile-time and link-time. When the
parallelizer finds opportunities for auto-parallelization, it parallelizes loops and you are informed
of the line or loop being parallelized if the −Minfo option is present on the compile line. See
Chapter 3, Command Line Options, for a complete specification of −Mconcur.

A loop is considered parallelizable if doesn't contain any cross-iteration data dependencies. Cross-
iteration dependencies from reductions and expandable scalars are excluded from consideration,
enabling more loops to be parallelizable. In general, loops with calls are not parallelized due to
unknown side effects. Also, loops with low trip counts are not parallelized since the overhead in
setting up and starting a parallel loop will likely outweigh the potential benefits (compiler
switches let you override some of these restrictions on auto-parallelization).

Optimization & Parallelization 33

2.6.1 Auto-parallelization Sub-options
The parallelizer performs various operations that can be controlled by arguments to the –Mconcur
command line option. The following sections describe these arguments that affect the operation of
the vectorizer. In addition, these vectorizer operations can be controlled from within code using
directives and pragmas. For details on the use of directives and pragmas, refer to Chapter 7,
Optimization Directives and Pragmas.
By default, –Mconcur without any sub-options is equivalent to:

–Mconcur=dist:block

This enables parallelization of loops with blocked iteration allocation across the available threads
of execution. These defaults may vary depending on the target system.

2.6.1.1 Altcode Option
The option –Mconcur=altcode instructs the parallelizer to generate alternate scalar code for
parallelized loops. If altcode is specified without arguments, the parallelizer determines an
appropriate cutoff length and generates scalar code to be executed whenever the loop count is less
than or equal to that length. If altcode:n is specified, the scalar altcode is executed whenever the
loop count is less than or equal to n. If noaltcode is specified, no alternate scalar code is
generated.

2.6.1.2 Dist Option
The option –Mconcur=dist:{block|cyclic} option specifies whether to assign loop iterations to the
available threads in blocks or in a cyclic (round-robin) fashion. Block distribution is the default.
If cyclic is specified, iterations are allocated to processors cyclically. That is, processor 0
performs iterations 0, 3, 6, etc.; processor 1 performs iterations 1, 4, 7, etc.; and processor 2
performs iterations 2, 5, 8, etc.

2.6.1.3 Cncall Option
The option –Mconcur=cncall specifies that it is safe to parallelize loops that contain subroutine or
function calls. By default, such loops are excluded from consideration for auto-parallelization.
Also, no minimum loop count threshold must be satisfied before parallelization will occur, and
last values of scalars are assumed to be safe.

The environment variable NCPUS is checked at runtime for a parallel program. If NCPUS is set to
1, a parallel program runs serially, but will use the parallel routines generated during compilation.
If NCPUS is set to a value greater than 1, the specified number of processors will be used to
execute the program. Setting NCPUS to a value exceeding the number of physical processors can
produce inefficient execution. Executing a program on multiple processors in an environment

34 Chapter 2

where some of the processors are being time-shared with another executing job can also result in
inefficient execution.

As with the vectorizer, the −Mconcur option can speed up code if it contains well-behaved
countable loops and/or computationally intensive nested loops that operate on arrays. However, it
is possible that some codes will show a decrease in performance on multi-processor systems when
compiled with −Mconcur due to parallelization overheads, memory bandwidth limitations in the
target system, false-sharing of cache lines, or other architectural or code-generation factors. For
this reason, it is recommended that you check carefully whether particular program units or loops
show improved performance when compiled using this option.

If the compiler is not able to successfully auto-parallelize your application, you should refer to
Chapter 5, OpenMP Directives for Fortran, or Chapter 6, OpenMP Pragmas for C and C++, to
see if insertion of explicit parallelization directives or pragmas and use of the –mp compiler
option enables the application to run in parallel.

2.6.2 Auto-parallelization Example
Assume the program from example 2-3 is compiled as follows:

 % pgf95 -fast –Mvect=sse –Mconcur -Minfo vadd.f
 vector_op:
 4, Parallel code generated; block distribution
 Unrolling inner loop 8 times
 loop:
 18, Parallel code activated if loop count >= 100;
 block distribution
 Generating vector sse code for inner loop
 Generated 3 prefetch instructions for this loop

You can see from the –Minfo messages that the data initialization loops in the main program, as
well as the computation loop in subroutine loop have been auto-parallelized. Following is the
result if the generated executable is run and timed on a standalone AMD Opteron 1.6 Ghz multi-
CPU system:

 % setenv NCPUS 2
 % /bin/time a.out
 -1.000000 -771.000 -3618.000 -6498.00 -9999.00

 8.00user 0.55system 0:04.27 elapsed 200%CPU

Note that the user time is the aggregate of the user time spent in all executing threads’ in this case
there are 2. The elapsed time is almost 35% less than the elapsed time required to execute the
program using only 1 thread, so the speed-up on two processors is about 1.52 times over the

Optimization & Parallelization 35

single-processor execution time.

2.6.3 Loops That Fail to Parallelize
In spite of the sophisticated analysis and transformations performed by the compiler,
programmers will often note loops that are seemingly parallel, but are not parallelized. In this
subsection, we’ll look at some examples of common situations where parallelization does not
occur.

2.6.3.1 Timing Loops
Often, loops will occur in programs that are similar to timing loops. The outer loop in the
following example is one such loop.

 do 1 j = 1, 2
 do 1 i = 1, n
 a(i) = b(i) + c(i)
1 continue

The outer loop above is not parallelized because the compiler detects a cross-iteration dependence
in the assignment to a(i). Suppose the outer loop were parallelized. Then both processors would
simultaneously attempt to make assignments into a(1:n). Now in general the values computed by
each processor for a(1:n) will differ, so that simultaneous assignment into a(1:n) will produce
values different from sequential execution of the loops.

In this example, values computed for a(1:n) don’t depend on j, so that simultaneous assignment
by both processors will not yield incorrect results. However, it is beyond the scope of the
compilers’ dependence analysis to determine that values computed in one iteration of a loop don’t
differ from values computed in another iteration. So the worst case is assumed, and different
iterations of the outer loop are assumed to compute different values for a(1:n). Is this
assumption too pessimistic? If j doesn’t occur anywhere within a loop, the loop exists only to
cause some delay, most probably to improve timing resolution. And, it’s not usually valid to
parallelize timing loops; to do so would distort the timing information for the inner loops.

2.6.3.2 Scalars
Quite often, scalars will inhibit parallelization of non-innermost loops. There are two separate
cases that present problems. In the first case, scalars appear to be expandable, but appear in non-
innermost loops, as in the following example.

 do 1 j = 1, n
 x = b(j)
 do 1 i = 1, n

36 Chapter 2

 a(i,j) = x + c(i,j)
1 continue

There are a number of technical problems to be resolved in order to recognize expandable scalars
in non-innermost loops. Until this generalization occurs, scalars like x above will inhibit
parallelization of loops in which they are assigned. In the following example, scalar k is not
expandable, and it is not an accumulator for a reduction.

 k = 1
 do 3 i = 1, n
 do 1 j = 1, n
1 a(j,i) = b(k) * x
 k = i
2 if (i .gt. n/2) k = n - (i - n/2)
3 continue

If the outer loop is parallelized, conflicting values will be stored into k by the various processors.
The variable k cannot be made local to each processor because the value of k must remain
coherent among the processors. It is possible the loop could be parallelized if all assignments to k
are placed in critical sections. However, it is not clear where critical sections should be introduced
because in general the value for k could depend on another scalar (or on k itself), and code to
obtain the value of other scalars must reside in the same critical section.

In the example above, the assignment to k within a conditional at label 2 prevents k from being
recognized as an induction variable. If the conditional statement at label 2 is removed, k would be
an induction variable whose value varies linearly with j, and the loop could be parallelized.

2.6.3.3 Scalar Last Values
During parallelization, scalars within loops often need to be privatized; that is, each execution
thread will have its own independent copy of the scalar. Problems can arise if a privatized scalar
is accessed outside the loop. For example, consider the following loop:

 for (i = 1; i<N; i++){
 if(f(x[i]) > 5.0) t = x[i];
 }
 v = t;

The value of t may not be computed on the last iteration of the loop. Normally, if a scalar is
assigned within a loop and used following the loop, the PGI compilers save the last value of the
scalar. However, if the loop is parallelized and the scalar is not assigned on every iteration, it may
be difficult (without resorting to costly critical sections) to determine on what iteration t is last

Optimization & Parallelization 37

assigned. Analysis allows the compiler to determine that a scalar is assigned on each iteration and
hence that the loop is safe to parallelize if the scalar is used later.

For example:

 for (i = 1; i < n; i++){
 if (x[i] > 0.0) {
 t = 2.0;
 }
 else {
 t = 3.0;
 y[i] = ...t;
 }
 }
 v = t

where t is assigned on every iteration of the loop. However, there are cases where a scalar may be
privatizable, but if it is used after the loop, it is unsafe to parallelize. Examine this loop:

 for (i = 1; i < N; i++){
 if(x[i] > 0.0){
 t = x[i];
 ...
 ...
 y[i] = ...t;
 }
 }
 v = t;

where each use of t within the loop is reached by a definition from the same iteration. Here t is
privatizable, but the use of t outside the loop may yield incorrect results since the compiler may
not be able to detect on which iteration of the parallelized loop t is last assigned. The compiler
detects the above cases. Where a scalar is used after the loop but is not defined on every iteration
of the loop, parallelization will not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop, the
programmer may use a directive or pragma to let the compiler know the loop is safe to parallelize.
The Fortran directive which tells the compiler that for a given loop the last value computed for all
scalars make it safe to parallelize the loop is:

cpgi$l safe_lastval

In addition, a command-line option, –Msafe_lastval, provides this information for all loops within
the routines being compiled (essentially providing global scope).

38 Chapter 2

2.7 Inter-Procedural Analysis and Optimization using -Mipa
The PGI Fortran, C and C++ compilers use interprocedural analysis (IPA) that results in minimal
changes to makefiles and the standard edit-build-run application development cycle. Other than
adding –Mipa to the command line, no other changes are required. For reference and background,
the process of building a program without IPA is described below, followed by the minor
modifications required to use IPA with the PGI compilers. While the PGCC compiler is used here
to show how IPA works, similar capabilities apply to each of the PGI Fortran, C and C++
compilers.

2.7.1 Building a Program Without IPA – Single Step
Using the PGCC command-level C compiler driver, three (for example) source files can be
compiled and linked into a single executable with one command:

% pgcc –o a.out file1.c file2.c file3.c

In actuality, the pgcc driver executes several steps to produce the assembly code and object files
corresponding to each source file, and subsequently to link the object files together into a single
executable file. Thus, the command above is roughly equivalent to the following commands
performed individually:

% pgcc -S -o file1.s file1.c
% as -o file1.o file1.s
% pgcc -S -o file2.s file2.c
% as -o file2.o file2.s
% pgcc -S -o file3.s file3.c
% as -o file3.o file3.s
% pgcc -o a.out file1.o file2.o file3.o

If any of the three source files is edited, the executable can be rebuilt with the same command
line:

% pgcc -o a.out file1.c file2.c file3.c

This always works as intended, but has the side-effect of recompiling all of the source files, even
if only one has changed. For applications with a large number of source files, this can be time-
consuming and inefficient.

2.7.2 Building a Program Without IPA - Several Steps
It is also possible to use individual pgcc commands to compile each source file into a
corresponding object file, and one to link the resulting object files into an executable:

Optimization & Parallelization 39

% pgcc -c file1.c
% pgcc -c file2.c
% pgcc -c file3.c
% pgcc -o a.out file1.o file2.o file3.o

The pgcc driver invokes the compiler and assembler as required to process each source file, and
invokes the linker for the final link command. If you modify one of the source files, the
executable can be rebuilt by compiling just that file and then relinking:

% pgcc -c file1.c
% pgcc -o a.out file1.o file2.o file3.o

2.7.3 Building a Program Without IPA Using Make
The program compilation and linking process can be simplified greatly using the make utility on
systems where it is supported. Using a file makefile containing the following lines:

a.out: file1.o file2.o file3.o
 pgcc $(OPT) -o a.out file1.o file2.o file3.o
file1.o: file1.c
 pgcc $(OPT) -c file1.c
file2.o: file2.c
 pgcc $(OPT) -c file2.c
file3.o: file3.c
 pgcc $(OPT) -c file3.c

It is possible to type a single make command:

% make

The make utility determines which object files are out of date with respect to their corresponding
source files, and invokes pgcc to recompile only those source files and to relink the executable.
If you subsequently edit one or more source files, the executable can be rebuilt with the minimum
number of recompilations using the same single make command.

2.7.4 Building a Program with IPA
Interprocedural analysis and optimization (IPA) by the PGI compilers is designed to alter the
standard and make utility command-level interfaces outlined above as little as possible. IPA
occurs in three phases:

40 Chapter 2

• Collection: Create a summary of each function or procedure, collecting the useful
information for interprocedural optimizations. This is done during the compile step if the
–Mipa switch is present on the command line; summary information is collected and
stored in the object file.

• Propagation: Processing all the object files to propagate the interprocedural summary
information across function and file boundaries. This is done during the link step, when
all the object files are combined, if the –Mipa switch is present on the link command
line.

• Recompile/Optimization: Each of the object files is recompiled with the propagated
interprocedural information, producing a specialized object file. This is also done during
the link step when the –Mipa switch is present on the link command line.

When linking with –Mipa, the PGI compilers automatically regenerate IPA-optimized versions of
each object file, essentially recompiling each file. If there are IPA-optimized objects from a
previous build, the compilers will minimize the recompile time by reusing those objects if they
are still valid. They will still be valid if the IPA-optimized object is newer than the original object
file, and the propagated IPA information for that file has not changed since it was optimized.

After each object file has been recompiled, the regular linker is invoked to build the application
with the IPA-optimized object files. The IPA-optimized object files are saved in the same
directory as the original object files, for use in subsequent program builds.

2.7.5 Building a Program with IPA - Single Step
By adding the –Mipa command line switch, several source files can be compiled and linked with
interprocedural optimizations with one command:

% pgcc -Mipa=fast -o a.out file1.c file2.c file3.c

Just like compiling without –Mipa, the driver executes several steps to produce the assembly and
object files, to create the executable:

% pgcc -Mipa=fast -S -o file1.s file1.c
% as -o file1.o file1.s
% pgcc -Mipa=fast -S -o file2.s file2.c
% as -o file2.o file2.s
% pgcc -Mipa=fast -S -o file3.s file3.c
% as -o file3.o file3.s
% pgcc -Mipa=fast -o a.out file1.o file2.o file3.o

Optimization & Parallelization 41

In the last step, an IPA linker is invoked to read all the IPA summary information and perform the
interprocedural propagation. The IPA linker reinvokes the compiler on each of the object files to
recompile then with interprocedural information. This creates three new objects with mangled
names:

file1_ipa5_a.out.o, file2_ipa5_a.out.o, file2_ipa5_a.out.o

The system linker is then invoked to link these IPA-optimized objects into the final executable.
Later, if one of the three source files is edited, the executable can be rebuilt with the same
command line:

% pgcc -Mipa=fast -o a.out file1.c file2.c file3.c

This will work, but again has the side-effect of compiling each source file, and recompiling each
object file at link time.

2.7.6 Building a Program with IPA - Several Steps
Just by adding the –Mipa command-line switch, it is possible to use individual pgcc commands
to compile each source file, followed by a command to link the resulting object files into an
executable:

% pgcc -Mipa=fast -c file1.c
% pgcc -Mipa=fast -c file2.c
% pgcc -Mipa=fast -c file3.c
% pgcc -Mipa=fast -o a.out file1.o file2.o file3.o

The pgcc driver invokes the compiler and assembler as required to process each source file, and
invokes the IPA linker for the final link command. If you modify one of the source files, the
executable can be rebuilt by compiling just that file and then relinking:

% pgcc -c file1.c
% pgcc -o a.out file1.o file2.o file3.o

When the IPA linker is invoked, it will determine that the IPA-optimized object for file1.o
(file1_ipa5_a.out.o) is stale, since it is older than the object file1.o, and hence will need to be
rebuilt, and will reinvoke the compiler to generate it. In addition, depending on the nature of the
changes to the source file file1.c, the interprocedural optimizations previously performed for file2
and file3 may now be inaccurate. For instance, IPA may have propagated a constant argument
value in a call from a function in file1.c to a function in file2.c; if the value of the argument has
changed, any optimizations based on that constant value are invalid. The IPA linker will
determine which, if any, of any previously created IPA-optimized objects need to be regenerated,
and will reinvoke the compiler as appropriate to regenerate them. Only those objects that are stale

42 Chapter 2

or which have new or different IPA information will be regenerated, which saves on compile
time.

2.7.7 Building a Program with IPA Using Make
As in the previous two sections, programs can be built with IPA using the make utility, just by
adding the –Mipa command-line switch:

OPT=-Mipa=fast
a.out: file1.o file2.o file3.o
pgcc $(OPT) -o a.out file1.o file2.o file3.o
file1.o: file1.c
pgcc $(OPT) -c file1.c
file2.o: file2.c
pgcc $(OPT) -c file2.c
file3.o: file3.c
pgcc $(OPT) -c file3.c

The single command:

% make

will invoke the compiler to generate any object files that are out-of-date, then invoke pgcc to link
the objects into the executable; at link time, pgcc will call the IPA linker to regenerate any stale
or invalid IPA-optimized objects.

2.7.8 Questions about IPA
• Why is the object file so large?

An object file created with –Mipa contains several additional sections. One
is the summary information used to drive the interprocedural analysis. In
addition, the object file contains the compiler internal representation of the
source file, so the file can be recompiled at link time with interprocedural
optimizations. There may be additional information when inlining is
enabled. The total size of the object file may be 5-10 times its original size.
The extra sections are not added to the final executable.

• What if I compile with –Mipa and link without –Mipa?

The PGI compilers generate a legal object file, even when the source file is
compiled with –Mipa. If you compile with –Mipa and link without –Mipa,
the linker is invoked on the original object files. A legal executable will be
generated; while this will not have the benefit of interprocedural
optimizations, any other optimizations will apply.

Optimization & Parallelization 43

• What if I compile without –Mipa and link with –Mipa?

At link time, the IPA linker must have summary information about all the
functions or routines used in the program. This information is created only
when a file is compiled with –Mipa. If you compile a file without –Mipa
and then try to get interprocedural optimizations by linking with –Mipa, the
IPA linker will issue a message that some routines have no IPA summary
information, and will proceed to run the system linker using the original
object files.

• Can I build multiple applications in the same directory with –Mipa?

Yes. Suppose you have three source files: main1.c, main2.c, sub.c, where
sub.c is shared between the two applications. When you build the first
application with –Mipa:

% pgcc -o app1 main1.c sub.c

the IPA linker will create two IPA-optimized object files:

main1_ipa4_app1.o sub_ipa4_app1.o

and use them to build the first application. When you build the second
application:

% pgcc -o app2 main2.c sub.c

the IPA linker will create two more IPA-optimized object files:

main2_ipa4_app2.o sub_ipa4_app2.o

Note there are now three object files for sub.c: the original sub.o, and two
IPA-optimized objects, one for each application in which it appears.

• How is the mangled name for the IPA-optimized object files generated?

The mangled name has '_ipa' appended, followed by the decimal number of the length of
the executable file name, followed by an underscore and the executable file name itself.

2.8 Default Optimization Levels
Table 2-1 shows the interaction between the –O, –g and –M<opt> options. In the table, level can
be 0, 1, 2 or 3, and <opt> can be vect, unroll or ipa. The default optimization level is dependent
upon these command-line options.

44 Chapter 2

Table 2-1: Optimization and –O, –g and –M<opt> Options

Optimize
Option

Debug
Option

–M<opt>
Option

Optimization Level

none none none 1
none none –M<opt> 2
none –g none 0
–O none or –g none 2
–Olevel none or –g none level
–Olevel <= 2 none or –g –M<opt> 2
–O3 none or –g none 3

Unoptimized code compiled using the option –O0 can be significantly slower than code generated
at other optimization levels. The –M<opt> option, where <opt> is vect, concur, unroll or ipa,
sets the optimization level to level-2 if no –O options are supplied. The –fast and –fastsse options
set the optimization level to a target-dependent optimization level if no –O options are supplied.

2.9 Local Optimization Using Directives and Pragmas
Command-line options let you specify optimizations for an entire source file. Directives supplied
within a Fortran source file, and pragmas supplied within a C or C++ source file, provide
information to the compiler and alter the effects of certain command-line options or default
behavior of the compiler (many directives have a corresponding command-line option).

While a command line option affects the entire source file that is being compiled, directives and
pragmas let you do the following:

• Apply, or disable, the effects of a particular command-line option to selected
subprograms or to selected loops in the source file (for example, an optimization).

• Globally override command-line options.

• Tune selected routines or loops based on your knowledge or on information obtained
through profiling.

Chapter 7, Optimization Directives and Pragmas, provides details on how to add directives and
pragmas to your source files.

Optimization & Parallelization 45

2.10 Execution Timing and Instruction Counting
 As this chapter shows, once you have a program that compiles, executes and gives correct results,
you may optimize your code for execution efficiency. Selecting the correct optimization level
requires some thought and may require that you compare several optimization levels before
arriving at the best solution. To compare optimization levels, you need to measure the execution
time for your program. There are several approaches you can take for timing execution. You can
use shell commands that provide execution time statistics, you can include system calls in your
code that provides timing information, or you can profile sections of code. In general, any of these
approaches will work; however, there are several important timing considerations to keep in
mind.

• Execution should take at least five seconds (the choice of five seconds is somewhat arbitrary,
the interval should be statistically significant). If the program does not execute for five
seconds, increase the iteration count of some internal loops or try to place a loop around the
main body of the program to extend execution time.

• Timing should eliminate or reduce the amount of system level activities such as program
loading and I/O and task switching.

• Use one of the 3F timing routines, if available, or a similar call available on your system, or
use the SECNDS pre-declared function in PGF77 or PGF95, or the SYSTEM_CLOCK or
CPU_CLOCK intrinsics in PGF95 or PGHPF.

46 Chapter 2

Example 2-4 shows a fragment that indicates how to use SYSTEM_CLOCK effectively within either
an HPF or F90/F95 program unit.

. . .
 integer :: nprocs, hz, clock0, clock1
 real :: time
 integer, allocatable :: t(:)
!hpf$ distribute t(cyclic)
#if defined (HPF)
 allocate (t(number_of_processors()))
#elif defined (_OPENMP)
 allocate (t(OMP_GET_NUM_THREADS()))
#else
 allocate (t(1))
#endif
 call system_clock (count_rate=hz)
!
 call system_clock(count=clock0)
 < do work>
 call system_clock(count=clock1)
!
 t = (clock1 - clock0)
 time = real (sum(t)) / (real(hz) * size(t))
 . . .

Example 2-4: Using SYSTEM_CLOCK

Command-line Options 47

Chapter 3
Command Line Options
This chapter describes the syntax and operation of each compiler option. The options are arranged
in alphabetical order. On a command-line, options need to be preceded by a hyphen (-). If the
compiler does not recognize an option, it passes the option to the linker.

This chapter uses the following notation:

[item] Square brackets indicate that the enclosed item is optional.

{item | item} Braces indicate that you must select one and only one of the enclosed
items. A vertical bar (|) separates the choices.

... Horizontal ellipses indicate that zero or more instances of the preceding
item are valid.

Note: Some options do not allow a space between the option and its argument or within an
argument. This fact is noted in the syntax section of the respective option.

Table 3-1: Generic PGI Compiler Options

Option Description

–# Display invocation information.
–### Show but do not execute the driver commands (same as

–dryrun).
–−byteswapio (Fortran only) Swap bytes from big-endian to little-endian or

vice versa on input/output of unformatted data
–C Instrument the generated executable to perform array bounds

checking at runtime.
–c Stops after the assembly phase and saves the object code in

filename.o.
−cyglibs (Windows only) link against the Cygnus libraries and use the

Cygnus include files. You must have the full Cygwin32
environment installed in order to use this switch.

–D <args> Defines a preprocessor macro.

48 Chapter 3

Option Description

-dryrun Show but do not execute driver commands.

−E Stops after the preprocessing phase and displays the
preprocessed file on the standard output.

-F Stops after the preprocessing phase and saves the
preprocessed file in filename.f (this option is only valid for
the PGI Fortran compilers).

−fast Generally optimal set of flags for the target.

−fastsse

Generally optimal set of flags for targets that include
SSE/SSE2 capability.

−flags Display valid driver options.

–fpic Generate position-independent code.

−fPIC Equivalent to −fpic.

−g Includes debugging information in the object module.

−g77libs Allow object files generated by g77 to be linked into PGI
main programs.

−help Display driver help message.

−I<dirname> Adds a directory to the search path for #include files.

–i2 Treat INTEGER variables as 2 bytes.
–i4 Treat INTEGER variables as 4 bytes.

–i8 Treat INTEGER variables as 8 bytes and use 64-bits for
INTEGER*8 operations.

–i8storage Treat INTEGER variables as 4 bytes but store them in 8 byte
(64-bit) words.

−K<flag> Requests special compilation semantics with regard to
conformance to IEEE 754.

−L<dirname> Specifies a library directory.
–l<libname> Loads a library.

−M<pgflag> Selects variations for code generation and optimization.
–m Displays a link map on the standard output.
−mcmodel=medium (−tp k8-64 and –tp p7-64 targets only) Generate code which

supports the medium memory model in the linux86-64
environment.

Command-line Options 49

Option Description

–module <moduledir> (F90/F95/HPF only) Save/search for module files in
directory <moduledir>.

−mp Interpret and process user-inserted shared-memory parallel
programming directives (see Chapters 5 and 6).

−mslibs (Windows only) use the Microsoft linker and include files,
and link against the Microsoft Visual C++ libraries.
Microsoft Visual C++ must be installed in order to use this
switch.

−msvcrt (Windows only) use Microsoft’s msvcrt.dll at runtime
rather than the default crtdll.dll.

–O<level> Specifies code optimization level where <level> is 0, 1, 2 or
3.

−o Names the object file.

−pc <val> Set precision globablly for x87 floating-point calculations;
must be used when compiling the main program. <val> may
be one of 32, 64 or 80.

–pg Instrument the generated executable to produce a gprof-style
gmon.out sample-based profiling trace file (−qp is also
supported, and is equivalent).

−pgf77libs Append PGF77 runtime libraries to the link line.

–pgf90libs Append PGF90/PGF95 runtime libraries to the link line.

−Q Selects variations for compiler steps.

−R<directory> (Linux only) Passed to the Linker. Hard code <directory>
into the search path for shared object files.

–r Creates a relocatable object file.
–r4 Interpret DOUBLE PRECISION variables as REAL.
–r8 Interpret REAL variables as DOUBLE PRECISION.

–rc file Specifies the name of the driver's startup file.

−S Stops after the compiling phase and saves the assembly–
language code in filename.s.

–s Strips the symbol-table information from the object file.
–shared (Linux only) Passed to the linker. Instructs the linker to

generate a shared object file.

50 Chapter 3

Option Description

–show Display driver's configuration parameters after startup.

–silent Do not print warning messages.

–time Print execution times for the various compilation steps.

− tp Specify the type of the target processor; –tp p5 for
Pentium processors, –tp p6 for Pentium Pro/II/III
processors, –tp p7 for 32-bit Pentium 4 and Xeon
processors, –tp k8-32 for Athlon64/Opteron processors
running a 32-bit operating system, –tp k8-64 for
Athlon64/Opteron processors running a 64-bit operating
system, and –tp p7-64 generates 64-bit code for Intel
Xeon EM64T and compatible processors. Using –tp px
will result in generic 32-bit X86 code generation.

–U<symbol> Undefine a preprocessor macro.
–u<symbol> Initializes the symbol table with <symbol>, which is

undefined for the linker. An undefined symbol triggers
loading of the first member of an archive library.

−V[release_number] Displays the version messages and other information, or
allows invocation of a version of the compiler other than the
default.

−v Displays the compiler, assembler, and linker phase
invocations.

−W Passes arguments to a specific phase.

−w Do not print warning messages.

There are a large number of compiler options specifc to the PGCC and PGC++ compilers,
especially PGC++. Table 3-2 lists several of these options, but is not exhaustive. For a complete
list of available options, including an exhaustive list of PGC++ options, use the –help command-
line option. For further detail on a given option, use –help and specify the option explicitly.

Command-line Options 51

Table 3-2: C and C++ -specific Compiler Options

Option Description

−A (pgCC only) Accept proposed ANSI C++.

−−no_alternative_tokens

(pgCC only) Enable/disable recognition of
alternative tokens. These are tokens that make
it possible to write C++ without the use of the ,
, [,], #, &, and ^ and characters. The alternative
tokens include the operator keywords (e.g., and,
bitand, etc.) and digraphs. The default is
−–no_alternative_tokens.

–B Allow C++ comments (using //) in C source

−b

(pgCC only) Compile with cfront 2.1
compatibility. This accepts constructs and a
version of C++ that is not part of the language
definition but is accepted by cfront.

−b3 (pgCC only) Compile with cfront 3.0
compatibility. See -b above.

−−bool

(pgCC only) Enable or disable recognition of
bool. The default value is ––bool.

−−[no]builtin

Do/don’t compile with math subroutine builtin
support, which causes selected math library
routines to be inlined. The default is ––builtin.

−−cfront_2.1 (pgCC only) Enable compilation of C++ with
compatibility with cfront version 2.1.

––cfront_3.0 (pgCC only) Enable compilation of C++ with
compatibility with cfront version 3.0.

−−create_pch filename (pgCC only) Create a precompiled header file
with the name filename.

−−dependencies (see −M) (pgCC only) Print makefile dependencies to
stdout.

−−

Dependencies_to_file filename
(pgCC only) Print makefile dependencies to file
filename.

−−diag_error tag (pgCC only) Override the normal error severity
of the specified diagnostic messages.

52 Chapter 3

Option Description

−−diag_remark tag (pgCC only) Override the normal error severity
of the specified diagnostic messages.

−−diag_suppress tag (pgCC only) Override the normal error severity
of the specified diagnostic messages.

−−diag_warning tag (pgCC only) Override the normal error severity
of the specified diagnostic messages.

−−display_error_number (pgCC only) Display the error message number
in any diagnostic messages that are generated.

–e<number> (pgCC only) Set the C++ front-end error limit
to the specified <number>.

−−[no_]exceptions (pgCC only) Disable/enable exception handling
support. The default is ––exceptions

––gnu_extensions
(pgCC only) Allow GNU extensions like
“include next” which are required to compile
Linux system header files.

−−[no]llalign
(pgCC only) Do/don’t align long long
integers on integer boundaries. The default is –
–llalign.

−M Generate make dependence lists.

−MD Generate make dependence lists.

−MD,filename (pgCC only) Generate make dependence lists
and print them to file filename.

−−optk_allow_dollar_in_id_chars
 (pgCC only) Accept dollar signs in identifiers.

−−pch (pgCC only) Automatically use and/or create a
precompiled header file.

−−pch_dir directoryname
(pgCC only) The directory dirname in which to
search for and/or create a precompiled header
file.

−−[no_]pch_messages
(pgCC only) Enable/ disable the display of a
message indicating that a precompiled header
file was created or used.

+p (pgCC only) Disallow all anachronistic
constructs.

−P Stops after the preprocessing phase and saves
the preprocessed file in filename.i.

Command-line Options 53

Option Description

−−preinclude=<filename>
(pgCC only) Specify file to be included at the
beginning of compilation; to set system-
dependent macros, types, etc

−t Control instantiation of template functions.

−−use_pch filename
(pgCC only) Use a precompiled header file of
the specified name as part of the current
compilation.

−−[no_]using_std
(pgCC only) Enable/disable implicit use of the
std namespace when standard header files are
included.

–X (pgCC only) Generate cross-reference
information and place output in specified file.

–Xm (pgCC only) Allow $ in names.
–xh (pgCC only) Enable exception handling.

–suffix (see –P)
(pgCC only) Use with –E, –F, or –P to save
intermediate file in a file with the specified
suffix.

3.1 Generic PGI Compiler Options

−#

Use the –# option to display the invocations of the compiler, assembler and linker. These
invocations are command-lines created by the driver from your command-line input and the
default values.

Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgf95 -# prog.f

Cross-reference: –Minfo, –V, –v.

54 Chapter 3

−###

Use the –### option to display the invocations of the compiler, assembler and linker but do not
execute them. These invocations are command lines created by the compiler driver from the
PGIRC files and the command-line options.

Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgf95 -### myprog.f

Cross-reference: –Minfo, –V, –dryrun.

−byteswapio

Use the –byteswapio option to swap the byte-order of data in unformatted Fortran data files on
input/output. When this option is used, the order of bytes is swapped in both the data and record
control words (the latter occurs in unformatted sequential files). Specifically, this option can be
used to convert big-endian format data files produced by most RISC workstations and high-end
servers to the little-endian format used on X86 or X86-64 systems on the fly during file
reads/writes. This option assumes that the record layouts of unformatted sequential access and
direct access files are the same on the systems. Also, the assumption is that the IEEE
representation is used for floating-point numbers. In particular, the format of unformatted data
files produced by PGI Fortran compilers is identical to the format used on Sun and SGI
workstations, that allows you to read and write unformatted Fortran data files produced on those
platforms from a program compiled for an X86 or X86-64 platform using the –byteswapio option.

Default: The compiler does not byte-swap data on input/output.

Usage: The following command-line requests byte-swapping are performed on input/output.

$ pgf95 -byteswapio myprog.f

−C

 Enables array bounds checking. If an array is an assumed size array, the bounds checking only applies
to the lower bound. If an array bounds violation occurs during execution, an error message describing
the error is printed and the program terminates. The text of the error message includes the name of the
array, the location where the error occurred (the source file and the line number in the source), and
information about the out of bounds subscript (its value, its lower and upper bounds, and its
dimension).

Command-line Options 55

Default: The compiler does not enable array bounds checking.

Usage: In this example, the compiler instruments the executable produced from myprog.f to
perform array bounds checking at runtime:

$ pgf95 -C myprog.f

Cross-reference: –Mbounds.

−c

Stops after the assembling phase. Use the –c option to halt the compilation process after the
assembling phase and write the object code to the file filename.o, where the input file is
filename.f.

Default: The compiler produces an executable file (does not use the –c option).

Usage: In this example, the compiler produces the object file myprog.o in the current directory.

$ pgf95 -c myprog.f

Cross-reference: –E, –Mkeepasm, –o, and –S.

−cyglibs

(Windows only) link against the Cygnus libraries and use the Cygnus include files. You must
have the full Cygwin32 environment installed in order to use this switch.

Default: The compiler does not link against the Cygnus libraries.

−D

Defines a preprocessor macro. Use the –D option to create a macro with a given value. The value
must be either an integer or a character string. You can use the –D option more than once on a
compiler command line. The number of active macro definitions is limited only by available
memory.

You can use macros with conditional compilation to select source text during preprocessing. A
macro defined in the compiler invocation remains in effect for each module on the command line,

56 Chapter 3

unless you remove the macro with an #undef preprocessor directive or with the –U option. The
compiler processes all of the –U options in a command line after processing the –D options.

Syntax:

–Dname[=value]

Where name is the symbolic name and value is either an integer value or a character string.

Default: If you define a macro name without specifying a value the preprocessor assigns the
string 1 to the macro name.

Usage: In the following example, the macro PATHLENGTH has the value 256 until a
subsequent compilation. If the –D option is not used, PATHLENGTH’s value is set to 128.

$ pgf95 –DPATHLENGTH=256 myprog.F

Where the source text is:

 #ifndef PATHLENGTH
 #define PATHLENGTH 128
 #endif
 SUBROUTINE SUB
 CHARACTER*PATHLENGTH path
 ...
 END

Cross-reference: –U

−dryrun

Use the –dryrun option to display the invocations of the compiler, assembler and linker but do not
execute them. These invocations are command lines created by the compiler driver from the
PGIRC file and the command-line supplied with –dryrun.

Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgf95 -dryrun myprog.f

Cross-reference: –Minfo, –V, –###

Command-line Options 57

−E

Stops after the preprocessing phase. Use the –E option to halt the compilation process after the
preprocessing phase and display the preprocessed output on the standard output.

Default: The compiler produces an executable file.

Usage: In the following example the compiler displays the preprocessed myprog.f on the
standard output.

$ pgf95 -E myprog.f

Cross-reference: See the options –C, –c, –Mkeepasm, –o, –F, –S.

−F

Stops compilation after the preprocessing phase. Use the –F option to halt the compilation process
after preprocessing and write the preprocessed output to the file filename.f where the input file is
filename .F.

Default: The compiler produces an executable file.

Usage: In the following example the compiler produces the preprocessed file myprog.f in the
current directory.

$ pgf95 -F myprog.F

Cross-reference: –c,–E, –Mkeepasm, –o, –S

−fast

A generally optimal set of options is chosen depending on the target system. In addition, the
appropriate –tp option is automatically included to enable generation of code optimized for the
type of system on which compilation is performed.

Note: Auto-selection of the appropriate –tp option means that programs
built using the –fast option on a given system are not necessarily
backward-compatible with older systems.

Cross-reference: –O, –Munroll, –Mnoframe, –Mvect, –tp, –Mscalarsse

58 Chapter 3

−fastsse

A generally optimal set of options is chosen for targets that support SSE/SSE2 capability. In
addition, the appropriate –tp option is automatically included to enable generation of code
optimized for the type of system on which compilation is performed.

Note: Auto-selection of the appropriate –tp option means that programs
built using the –fastsse option on a given system are not necessarily
backward-compatible with older systems.

Cross-reference: –O, –Munroll, –Mnoframe, –Mscalarsse, –Mvect, –Mcache_align, –tp

−flags

Displays driver options on the standard output. Use this option with –v to list options that are
recognized and ignored, as well as the valid options.

Cross-reference: –#, –###, –v

−fpic

 (Linux only) Generate position-independent code suitable for inclusion in shared object
(dynamically linked library) files.

Cross-reference: –shared, –G, –R

−fPIC

 (Linux only) Equivalent to −fpic. Provided for compatibility with other compilers.

Cross-reference: –fpic, –shared, –G, –R

Command-line Options 59

−G

Passed to the linker. Instructs the linker to produce a shared object (dynamically linked library)
file.

Cross-reference: –fpic, –shared, –R

−g

The –g option instructs the compiler to include symbolic debugging information in the object
module. Debuggers, such as PGDBG, require symbolic debugging information in the object
module to display and manipulate program variables and source code. Note that including
symbolic debugging information increases the size of the object module.

If you specify the –g option on the command-line, the compiler sets the optimization level to –O0
(zero), unless you specify the –O option. For more information on the interaction between the –g
and –O options, see the –O entry. Symbolic debugging may give confusing results if an
optimization level other than zero is selected.

Default: The compiler does not put debugging information into the object module.

Usage: In the following example, the object file a.out contains symbolic debugging information.

$ pgf95 -g myprog.f

−g77libs

Use the –g77libs option on the link line if you are linking g77-compiled program units into a
pgf95-compiled main program using the pgf95 driver. When this option is present, the pgf95
driver will search the necessary g77 support libraries to resolve references specific to g77
compiled program units. The g77 compiler must be installed on the system on which linking
occurs in order for this option to function correctly.

Default: The compiler does not search g77 support libraries to resolve references at link time.

Usage: The following command-line requests that g77 support libraries be searched at link time:

$ pgf95 -g77libs myprog.f g77_object.o

60 Chapter 3

−help

Used with no other options, –help displays options recognized by the driver on the standard
output. When used in combination with one or more additional options, usage information for
those options is displayed to standard output.

Usage: In the following example, usage information for –Minline is printed to standard output.

$ pgcc -help -Minline
-Minline[=lib:<inlib>|<func>|except:<func>|
 name:<func>|size:<n>|levels:<n>]
 Enable function inlining
 lib:<extlib> Use extracted functions from extlib
 <func> Inline function func
 except:<func> Do not inline function func
 name:<func> Inline function func
 size:<n> Inline only functions smaller than n
 levels:<n> Inline n levels of functions
 -Minline Inline all functions that were extracted

In the following example, usage information for –help shows how groups of options can be listed
or examined according to function

$ pgcc -help -help
-help[=groups|asm|debug|language|linker|opt|other|
 overall|phase|prepro|suffix|switch|target|variable]
 Show compiler switches

Cross-reference: –#, –###, –show, –V, –flags

−I

Adds a directory to the search path for files that are included using the INCLUDE statement or the
preprocessor directive #include. Use the –I option to add a directory to the list of where to
search for the included files. The compiler searches the directory specified by the –I option before
the default directories.

Command-line Options 61

Syntax:

–Idirectory

Where directory is the name of the directory added to the standard search path for include files.

Usage: The Fortran INCLUDE statement directs the compiler to begin reading from another file.
The compiler uses two rules to locate the file:

1. If the file name specified in the INCLUDE statement includes a path name, the compiler
begins reading from the file it specifies.

2. If no path name is provided in the INCLUDE statement, the compiler searches (in
order):

♦ any directories specified using the –I option (in the order specified.)

♦ the directory containing the source file

♦ the current directory

For example, the compiler applies rule (1) to the following statements:

INCLUDE '/bob/include/file1' (absolute path name)
INCLUDE '../../file1' (relative path name)

and rule (2) to this statement:

INCLUDE 'file1'

Cross-reference: –Mnostdinc

−i2, −i4 and −i8

Treat INTEGER variables as either two, four, or eight bytes. INTEGER*8 values not only occupy
8 bytes of storage, but operations use 64 bits, instead of 32 bits.

−i8storage

Treat INTEGER and LOGICAL variables as four bytes, but store them in 8 byte (64-bit) words.

62 Chapter 3

−K<flag>

Requests that the compiler provide special compilation semantics.

Syntax:

–K<flag>

Where flag is one of the following:

ieee Perform floating-point operations in strict conformance with the IEEE 754
standard. Some optimizations are disabled, and on some systems a more
accurate math library is linked if –Kieee is used during the link step.

noieee Use the fastest available means to perform floating-point operations, link
in faster non-IEEE libraries if available, and disable underflow traps.

PIC (Linux only) Generate position-independent code. Equivalent to –fpic.
Provided for compatibility with other compilers.

pic (Linux only) Generate position-independent code. Equivalent to –fpic.
Provided for compatibility with other compilers.

trap=option[,option]...
Controls the behavior of the processor when
floating-point exceptions occur. Possible options include:
 fp
 align (ignored)
 inv
 denorm
 divz
 ovf
 unf
 inexact

–Ktrap is only processed by the compilers when compiling main
functions/programs. The options inv, denorm, divz, ovf, unf, and inexact
correspond to the processor’s exception mask bits invalid operation,
denormalized operand, divide-by-zero, overflow, underflow, and
precision, respectively. Normally, the processor’s exception mask bits are
on (floating-point exceptions are masked—the processor recovers from the
exceptions and continues). If a floating-point exception occurs and its
corresponding mask bit is off (or “unmasked”), execution terminates with
an arithmetic exception (C's SIGFPE signal). −Ktrap=fp is equivalent to
−Ktrap=inv,divz,ovf.

Command-line Options 63

Default: The default is −Knoieee.

−L

Specifies a directory to search for libraries. Use –L to add directories to the search path for library
files. Multiple –L options are valid. However, the position of multiple –L options is important
relative to –l options supplied.

Syntax:

–Ldirectory

Where directory is the name of the library directory.

Default: Search the standard library directory.

Usage: In the following example, the library directory is /lib and the linker links in the standard
libraries required by PGF95 from /lib.

$ pgf95 –L/lib myprog.f

In the following example, the library directory /lib is searched for the library file libx.a and both
the directories /lib and /libz are searched for liby.a.

$ pgf95 –L/lib –lx –L/libz –ly myprog.f

−l<library>

Loads a library. The linker searches <library> in addition to the standard libraries. Libraries
specified with –l are searched in order of appearance and before the standard libraries.

Syntax:

–llibrary

Where library is the name of the library to search. The compiler prepends the characters lib to the
library name and adds the .a extension following the library name.

Usage: In the following example, if the standard library directory is /lib the linker loads the
library /lib/libmylib.a, in addition to the standard libraries.

$ pgf95 myprog.f –lmylib

64 Chapter 3

−M<pgflag>

Selects options for code generation. The options are divided into the following categories:

• Code generation

• Environment

• Inlining

• Fortran Language Controls

• C/C++ Language Controls

• Optimization

• Miscellaneous

Command-line Options 65

Table 3-3 lists and briefly describes the options alphabetically and includes a field showing the
category.

Table 3-3: –M Options Summary

pgflag Description Category

anno annotate the assembly code with source code. Miscellaneous
[no]asmkeyword specifies whether the compiler allows the asm

keyword in C/C++ source files (pgcc and pgCC
only).

C/C++
Language

[no]backslash determines how the backslash character is
treated in quoted strings (pgf77, pgf95, and
pghpf only).

Fortran
Language

[no]bounds specifies whether array bounds checking is
enabled or disabled.

Miscellaneous

[no]builtin Do/don’t compile with math subroutine builtin
support, which causes selected math library
routines to be inlined (pgcc and pgCC only).

Optimization

−byteswapio Swap byte-order (big-endian to little-endian or
vice versa) during I/O of Fortran unformatted
data.

Miscellaneous

cache_align where possible, align data objects of size greater
than or equal to 16 bytes on cache-line
boundaries.

Optimization

chkfpstk check for internal consistency of the X86 FP
stack in the prologue of a function and after
returning from a function or subroutine call.

Miscellaneous

chkptr check for NULL pointers (pgf95 and pghpf
only).

Miscellaneous

chkstk check the stack for available space upon entry to
and before the start of a parallel region. Useful
when many private variables are declared.

Miscellaneous

concur enable auto-concurrentization of loops. Multiple
processors will be used to execute parallelizable
loops (only valid on shared memory multi-CPU
systems).

Optimization

cray Force Cray Fortran (CF77) compatibility
(pgf77, pgf95, and pghpf only).

Optimization

66 Chapter 3

pgflag Description Category

[no]daz Do/don’t treat denormalized numbers as zero. Code
Generation

[no]dclchk determines whether all program variables must
be declared (pgf77, pgf95, and pghpf only).

Fortran
Language

[no]defaultunit determines how the asterisk character ("*") is
treated in relation to standard input and standard
output (regardless of the status of I/O units 5
and 6, pgf77, pgf95, and pghpf only).

Fortran
Language

[no]depchk checks for potential data dependencies. Optimization
[no]dlines determines whether the compiler treats lines

containing the letter "D" in column one as
executable statements (pgf77, pgf95, and pghpf
only).

Fortran
Language

dll Link with the DLL version of the runtime
libraries (Windows only).

Miscellaneous

dollar specifies the character to which the compiler
maps the dollar sign code (pgf77, pgf95, and
pghpf only).

Fortran
Language

dwarf1 when used with –g, generate DWARF1 format
debug information.

Code
Generation

dwarf2 when used with –g, generate DWARF2 format
debug information.

Code
Generation

extend the compiler accepts 132-column source code;
otherwise it accepts 72-column code (pgf77,
pgf95, and pghpf only).

Fortran
Language

extract invokes the function extractor. Inlining
fcon instructs the compiler to treat floating-point

constants as float data types (pgcc and pgCC
only).

C/C++
Language

fixed the compiler assumes F77-style fixed format
source code (pgf95 and pghpf only).

Fortran
Language

[no]flushz do/don’t set SSE flush-to-zero mode Code
Generation

free the compiler assumes F90-style free format
source code (pgf95 and pghpf only).

Fortran
Language

func32 the compiler aligns all functions to 32-byte
boundaries.

Code
Generation

Command-line Options 67

pgflag Description Category

noi4 determines how the compiler treats INTEGER
variables (pgf77, pgf95, and pghpf only).

Optimization

info prints informational messages regarding
optimization and code generation to standard
output as compilation proceeds.

Miscellaneous

inform specifies the minimum level of error severity
that the compiler displays.

Miscellaneous

inline invokes the function inliner. Inlining

[no]ipa invokes inter-procedural analysis and
optimization.

Optimization

[no]iomutex determines whether critical sections are
generated around Fortran I/O calls (pgf77,
pgf95, and pghpf only).

Fortran
Language

nolarge_arrays enable support for 64-bit indexing and single
static data objects of size larger than 2GB.

Code
Generation

lfs link in libraries that allow file I/O to files of
size larger than 2GB on 32-bit systems (32-bit
Linux only).

Environment

[no]lre Disable/enable loop-carried redundancy
elimination.

Optimization

keepasm instructs the compiler to keep the assembly file. Miscellaneous
[no]list specifies whether the compiler creates a listing

file.
Miscellaneous

makedll Generate a dynamic link library (DLL)
(Windows only).

Miscellaneous

neginfo instructs the compiler to produce information on
why certain optimizations are not performed.

Miscellaneous

noframe eliminates operations that set up a true stack
frame pointer for functions.

Optimization

nomain when the link step is called, don’t include the
object file that calls the Fortran main program
(pgf77, pgf95, and pghpf only).

Code
Generation

noopenmp when used in combination with the −mp option,
causes the compiler to ignore OpenMP
parallelization directives or pragmas, but still
process SGI-style parallelization directives or
pragmas.

Miscellaneous

68 Chapter 3

pgflag Description Category

nontemporal force generation of non-temporal moves and
prefetching even in cases where it may not be
beneficial.

Code
Generation

nopgdllmain do not link the module containing the default
DllMain() into the DLL (Windows only).

Miscellaneous

nosgimp when used in combination with the −mp option,
causes the compiler to ignore SGI-style
parallelization directives or pragmas, but still
process OpenMP directives or pragmas.

Miscellaneous

nostartup do not link in the standard startup routine
(pgf77, pgf95, and pghpf only).

Environment

nostddef instructs the compiler to not recognize the
standard preprocessor macros.

Environment

nostdinc instructs the compiler to not search the standard
location for include files.

Environment

nostdlib instructs the linker to not link in the standard
libraries.

Environment

noonetrip determines whether each DO loop executes at
least once (pgf77, pgf95, and pghpf only).

Language

novintr disable idiom recognition and generation of
calls to optimized vector functions.

Optimization

pfi instrument the generated code and link in
libraries for dynamic collection of profile and
data information at runtime.

Optimization

pfo read a pgfi.out trace file and use the information
to enable or guide optimizations.

Optimization

[no]prefetch (disable) enable generation of prefetch
instructions.

Optimization

preprocess perform cpp-like preprocessing on assembly
language and Fortran input source files.

Miscellaneous

prof set profile options; function-level and line-level
profiling are supported.

Code
Generation

[no]r8 determines whether the compiler promotes
REAL variables and constants to DOUBLE
PRECISION (pgf77, pgf95, and pghpf only).

Optimization

[no]r8intrinsics determines how the compiler treats the intrinsics
CMPLX and REAL (pgf77, pgf95, and pghpf
only).

 Optimization

Command-line Options 69

pgflag Description Category

[no]recursive allocate (do not allocate) local variables on the
stack, this allows recursion. SAVEd, data-
initialized, or namelist members are always
allocated statically, regardless of the setting of
this switch (pgf77, pgf95, and pghpf only).

Code
Generation

[no]reentrant specifies whether the compiler avoids
optimizations that can prevent code from being
reentrant.

Code
Generation

[no]ref_externals do/don’t force references to names appearing in
EXTERNAL statements (pgf77, pgf95, and
pghpf only).

Code
Generation

safeptr instructs the compiler to override data
dependencies between pointers and arrays (pgcc
and pgCC only).

Optimization

safe_lastval In the case where a scalar is used after a loop,
but is not defined on every iteration of the loop,
the compiler does not by default parallelize the
loop. However, this option tells the compiler it
safe to parallelize the loop. For a given loop, the
last value computed for all scalars make it safe
to parallelize the loop.

Code
Generation

[no]save determines whether the compiler assumes that
all local variables are subject to the SAVE
statement (pgf77, pgf95, and pghpf only).

Fortran
Language

[no]scalarsse do/don’t use SSE/SSE2 instructions to perform
scalar floating-poing arithmetic.

Optimization

schar specifies signed char for characters (pgcc and
pgCC only − also see uchar).

C/C++
Language

[no]second_underscore do/don’t add the second underscore to the name
of a Fortran global if its name already contains
an underscore (pgf77, pgf95, and pghpf only).

Code
Generation

[no]signextend do/don’t extend the sign bit, if it is set. Code
Generation

[no]single do/don’t convert float parameters to double
parameter characters (pgcc and pgCC only).

C/C++
Language

[no]smart do/don’t enable optional AMD64-specific post-
pass assembly optimizer.

Optimization

70 Chapter 3

pgflag Description Category

standard causes the compiler to flag source code that
does not conform to the ANSI standard (pgf77,
pgf95, and pghpf only).

Fortran
Language

nostride0 the compiler generates (does not generate)
alternate code for a loop that contains an
induction variable whose increment may be zero
(pgf77, pgf95, and pghpf only).

Code
Generation

uchar specifies unsigned char for characters (pgcc and
pgCC only − also see schar).

C/C++
Language

unix uses UNIX calling and naming conventions for
Fortran subprograms (pgf77, pgf95, and pghpf
for Windows only).

Code
Generation

[no]unixlogical determines whether logical .TRUE. and
.FALSE. are determined by non-zero (TRUE)
and zero (FALSE) values for unixlogical. With
nounixlogical, the default, -1 values are TRUE
and 0 values are FALSE (pgf77, pgf95, and
pghpf only).

Fortran
Language

[no]unroll controls loop unrolling. Optimization
[no]upcase determines whether the compiler allows

uppercase letters in identifiers (pgf77, pgf95,
and pghpf only).

Fortran
Language

varargs force Fortran program units to assume calls are
to C functions with a varargs type interface
(pgf77 and pgf95 only).

Code
Generation

[no]vect invokes the code vectorizer. Optimization

Following are detailed descriptions of several, but not all, of the –M<pgflag> options outlined in
the table above. These options are grouped according the category that appears in column 3 of the
table above, and are listed with exact syntax, defaults, and notes concerning similar or related
options. For the latest information and description of a given option, or to see all available
options, use the –help command-line option to any of the PGI compilers.

Command-line Options 71

−M<pgflag> Code Generation Controls

Syntax:

−Mdaz
Set IEEE denormalized input values to zero; there is a performance
benefit but misleading results can occur, such as when dividing a small
normalized number by a denormalized number.

−Mnodaz
Do not treat denormalized numbers as zero.

−Mdwarf1
Generate DWARF1 format debug information; must be used in
combination with –g.

−Mdwarf2
Generate DWARF2 format debug information; must be used in
combination with –g.

−Mflushz
Set SSE flush-to-zero mode; if a floating-point underflow occurs, the
value is set to zero.

−Mnoflushz
Do not set SSE flush-to-zero mode; generate underflows.

−Mfunc32
Align functions on 32-byte boundaries.

−Mlarge_arrays
Enable support for 64-bit indexing and single static data objects larger
than 2GB in size. This option is default in the presence of
–mcmodel=medium. Can be used separately together with the default
small memory model for certain 64-bit applications that manage their
own memory space.

72 Chapter 3

−Mnolarge_arrays
Disable support for 64-bit indexing and single static data objects larger
than 2GB in size. When placed after –mcmodel=medium on the
command line, disables use of 64-bit indexing for applications that
have no single data object larger than 2GB.

−Mnomain instructs the compiler not to include the object file that calls the Fortran
main program as part of the link step. This option is useful for linking
programs in which the main program is written in C/C++ and one or more
subroutines are written in Fortran (pgf77, pgf95, and pghpf only).

−Mnontemporal instructs the compiler to generate nontemporal move and prefetch
instructions even in cases where the compiler cannot determine statically
at compile-time that these instructions will be beneficial.

−Mprof [=option[, option,...]]

Set profile options. option can be any of the following:

dwarf generate limited DWARF information to enable source
correlation by 3rd-party profiling tools.

func perform PGI-style function-level profiling.

hwcts Use PAPI-based profiling with hardware counters
(linux86-64 platforms only).

lines perform PGI-style line-level profiling.

mpi perform MPI profiling (available only in PGI CDK Cluster
Development Kit configurations).

time Sample-based instruction-level profiling.

−Mrecursive instructs the compiler to allow Fortran subprograms to be called
recursively.

−Mnorecursive Fortran subprograms may not be called recursively.

−Mref_externals force references to names appearing in EXTERNAL statements (pgf77,
pgf95, and pghpf only).

−Mnoref_externals
do not force references to names appearing in EXTERNAL statements
(pgf77, pgf95, and pghpf only).

Command-line Options 73

−Mreentrant instructs the compiler to avoid optimizations that can prevent code from
being reentrant.

−Mnoreentrant instructs the compiler not to avoid optimizations that can prevent code
from being reentrant.

−Msecond_underscore
instructs the compiler to add a second underscore to the name of a Fortran
global symbol if its name already contains an underscore. This option is
useful for maintaining compatibility with object code compiled using g77,
which uses this convention by default (pgf77, pgf95, and pghpf only).

−Mnosecond_underscore
instructs the compiler not to add a second underscore to the name of a
Fortran global symbol if its name already contains an underscore (pgf77,
pgf95, and pghpf only).

−Msignextend instructs the compiler to extend the sign bit that is set as a result of
converting an object of one data type to an object of a larger signed data
type.

−Mnosignextend instructs the compiler not to extend the sign bit that is set as the result of
converting an object of one data type to an object of a larger data type.

−Msafe_lastval In the case where a scalar is used after a loop, but is not defined on every
iteration of the loop, the compiler does not by default parallelize the loop.
However, this option tells the compiler it’s safe to parallelize the loop. For
a given loop the last value computed for all scalars make it safe to
parallelize the loop.

−Mstride0 instructs the compiler to inhibit certain optimizations and to allow for
stride 0 array references. This option may degrade performance and should
only be used if zero-stride induction variables are possible.

−Mnostride0 instructs the compiler to perform certain optimizations and to disallow for
stride 0 array references.

−Munix use UNIX symbol and parameter passing conventions for Fortran
subprograms (pgf77, pgf95, and pghpf for Windows only).

−Mvarargs force Fortran program units to assume procedure calls are to C functions
with a varargs-type interface (pgf77 and pgf95 only).

74 Chapter 3

Default: For arguments that you do not specify, the default code generation controls are as
follows:

 nodaz noflushz
 norecursive nostride0
 noreentrant

 nosecond_underscore
noref_externals

signextend

−M<pgflag> Environment Controls

Syntax:

−Mlfs (32-bit Linux systems only) link in libraries that enable file I/O to files
larger than 2GB (Large File Support).

−Mnostartup instructs the linker not to link in the standard startup routine that contains
the entry point (_ start) for the program.

 Note: If you use the –Mnostartup option and do not supply an entry point,
the linker issues the following error message:
Warning: cannot find entry symbol _ start

−Mnostddef instructs the compiler not to predefine any macros to the preprocessor
when compiling a C program.

−Mnostdlib instructs the linker not to link in the standard libraries libpgftnrtl.a, libm.a,
libc.a and libpgc.a in the library directory lib within the standard directory.
You can link in your own library with the –l option or specify a library
directory with the –L option.

Default: For arguments that you do not specify, the default environment option depends on your
configuration.

Cross-reference: –D, –I, –L, –l, –U

−M<pgflag> Inlining Controls

This section describes the –M<pgflag> options that control function inlining.

Command-line Options 75

Syntax:

−Mextract[=option[, option,...]]

Extracts functions from the file indicated on the command line and creates or
appends to the specified extract directory. option can be any of:

name:func instructs the extractor to extract function func from the file.

size:number instructs the extractor to extract functions with
 number or fewer, statements from the file.

lib:dirname Use directory dirname as the extract directory (required in
 order to save and re-use inline libraries).

If you specify both name and size, the compiler extracts functions that match func,
or that have number or fewer statements. For examples of extracting functions, see
Chapter 4, Function Inlining.

−Minline[=func | filename.ext | number | levels:number],...

This passes options to the function inliner where:

except:func instructs the inliner to inline all eligible functions except func, a
function in the source text. Multiple functions can be listed,
comma-separated.

[name:]func instructs the inliner to inline the function func. The func name
should be a non-numeric string that does not contain a
period. You can also use a name: prefix followed by the
function name. If name: is specified, what follows is always
the name of a function.

filename.ext instructs the inliner to inline the functions within the library file
filename.ext. The compiler assumes that a filename.ext option
containing a period is a library file. Create the library file using
the –Mextract option. You can also use a lib: prefix followed by
the library name. If lib: is specified, no period is necessary in the
library name. Functions from the specified library are inlined. If
no library is specified, functions are extracted from a temporary
library created during an extract prepass.

Number instructs the inliner to inline functions with number or fewer,
statements. You can also use a size: prefix followed by a number.

76 Chapter 3

If size: is specified, what follows is always taken as a number.

levels:number instructs the inliner to perform number levels of inlining. The
 default number is 1.

If you specify both func and number, the compiler inlines functions that match the
function name or have number or fewer statements. For examples of inlining
functions, see Chapter 4, Function Inlining.

Usage: In the following example, the compiler extracts functions that have 500 or fewer
statements from the source file myprog.f and saves them in the file extract.il.

 $ pgf95 –Mextract=500 –oextract.il myprog.f

In the following example, the compiler inlines functions with fewer than approximately 100
statements in the source file myprog.f and writes the executable code in the default output file
a.out.

 $ pgf95 –Minline=size:100 myprog.f

Cross-reference: –o

−M<pgflag> Fortran Language Controls

This section describes the –M<pgflag> options that affect Fortran language interpretations by the
PGI Fortran compilers. These options are only valid to the pgf77, pgf95, and pghpf compiler
drivers.

Syntax:
−Mbackslash the compiler treats the backslash as a normal character, and not as an

escape character in quoted strings.
−Mnobackslash the compiler recognizes a backslash as an escape character in quoted

strings (in accordance with standard C usage).

−Mdclchk the compiler requires that all program variables be declared.

−Mnodclchk the compiler does not require that all program variables be declared.

−Mdefaultunit the compiler treats "*" as a synonym for standard input for reading and
standard output for writing.

−Mnodefaultunit the compiler treats "*" as a synonym for unit 5 on input and unit 6 on
output.

Command-line Options 77

−Mdlines the compiler treats lines containing "D" in column 1 as executable
statements (ignoring the "D").

−Mnodlines the compiler does not treat lines containing "D" in column 1 as executable
statements (does not ignore the "D").

−Mdollar,char char specifies the character to which the compiler maps the dollar sign.
The compiler allows the dollar sign in names.

−Mextend with –Mextend, the compiler accepts 132-column source code; otherwise it
accepts 72-column code.

−Mfixed with –Mfixed, the compiler assumes input source files are in FORTRAN
77-style fixed form format.

−Mfree with –Mfree, the compiler assumes the input source files are in Fortran
90/95 freeform format.

−Miomutex the compiler generates critical section calls around Fortran I/O statements.

−Mnoiomutex the compiler does not generate critical section calls around Fortran I/O
statements.

−Monetrip the compiler forces each DO loop to execute at least once.

−Mnoonetrip the compiler does not force each DO loop to execute at least once. This
option is useful for programs written for earlier versions of Fortran.

−Msave the compiler assumes that all local variables are subject to the SAVE
statement. Note that this may allow older Fortran programs to run, but it
can greatly reduce performance.

−Mnosave the compiler does not assume that all local variables are subject to the
SAVE statement.

−Mstandard the compiler flags non-ANSI–conforming source code.

−Munixlogical directs the compiler to treat logical values as true if the value is non-zero
and false if the value is zero (UNIX F77 convention.) When
–Munixlogical is enabled, a logical value or test that is non-zero is
.TRUE., and a value or test that is zero is .FALSE.. In addition, the value
of a logical expression is guaranteed to be one (1) when the result is
.TRUE..

78 Chapter 3

−Mnounixlogical directs the compiler to use the VMS convention for logical values for true
and false. Even values are true and odd values are false.

−Mupcase the compiler allows uppercase letters in identifiers. With –Mupcase, the
identifiers "X" and "x" are different, and keywords must be in lower case.
This selection affects the linking process: if you compile and link the same
source code using –Mupcase on one occasion and
–Mnoupcase on another, you may get two different executables
(depending on whether the source contains uppercase letters). The standard
libraries are compiled using the default –Mnoupcase.

−Mnoupcase the compiler converts all identifiers to lower case. This selection affects
the linking process: If you compile and link the same source code using
–Mupcase on one occasion and –Mnoupcase on another, you may get two
different executables (depending on whether the source contains uppercase
letters). The standard libraries are compiled using –Mnoupcase.

Default: For arguments that you do not specify, the defaults are as follows:

nobackslash noiomutex
nodclchk noonetrip
nodefaultunit nosave
nodlines nounixlogical
dollar,_ noupcase

−M<pgflag> C/C++ Language Controls

This section describes the –M<pgflag> options that affect C/C++ language interpretations by the
PGI C and C++ compilers. These options are only valid to the pgcc and pgCC compiler drivers.

Syntax:

−Masmkeyword instructs the compiler to allow the asm keyword in C source files. The
syntax of the asm statement is as follows:

 asm("statement");

 Where statement is a legal assembly-language statement. The quote marks
are required.

Command-line Options 79

−Mnoasmkeyword
instructs the compiler not to allow the asm keyword in C source files. If
you use this option and your program includes the asm keyword,
unresolved references will be generated

−Mdollar,char char specifies the character to which the compiler maps the dollar sign ($).
The PGCC compiler allows the dollar sign in names; ANSI C does not
allow the dollar sign in names.

−Mfcon instructs the compiler to treat floating-point constants as float data
types, instead of double data types. This option can improve the
performance of single-precision code.

−Mschar specifies signed char characters. The compiler treats "plain" char
declarations as signed char.

−Msingle do not to convert float parameters to double parameters in non-
prototyped functions. This option can result in faster code if your program
uses only float parameters. However, since ANSI C specifies that
routines must convert float parameters to double parameters in non-
prototyped functions, this option results in non-ANSI conformant code.

−Mnosingle instructs the compiler to convert float parameters to double parameters
in non-prototyped functions.

−Muchar instructs the compiler to treat "plain" char declarations as unsigned
char.

Default: For arguments that you do not specify, the defaults are as follows:

noasmkeyword nosingle
dollar,_ schar

Usage:

In this example, the compiler allows the asm keyword in the source file.

 $ pgcc -Masmkeyword myprog.c

In the following example, the compiler maps the dollar sign to the dot character.

 $ pgcc -Mdollar,. myprog.c

80 Chapter 3

In the following example, the compiler treats floating-point constants as float values.

 $ pgcc -Mfcon myprog.c

In the following example, the compiler does not convert float parameters to double parameters.

 $ pgcc -Msingle myprog.c

Without –Muchar or with –Mschar, the variable ch is a signed character:

 char ch;
 signed char sch;

If –Muchar is specified on the command line:

 $ pgcc -Muchar myprog.c

char ch above is equivalent to:

 unsigned char ch;

−M<pgflag> Optimization Controls

Syntax:

−Mcache_align Align unconstrained objects of length greater than or equal to 16 bytes on
cache-line boundaries. An unconstrained object is a data object that is not
a member of an aggregate structure or common block. This option does
not affect the alignment of allocatable or automatic arrays.

 Note: To effect cache-line alignment of stack-based local variables, the
main program or function must be compiled with –Mcache_align.

−Mconcur[=option [,option,...]]

Instructs the compiler to enable auto-concurrentization of loops. If
−Mconcur is specified, multiple processors will be used to execute loops
that the compiler determines to be parallelizable. Where option is one of
the following:

altcode:n
Instructs the parallelizer to generate alternate scalar code for

Command-line Options 81

parallelized loops. If altcode is specified without arguments, the
parallelizer determines an appropriate cutoff length and generates
scalar code to be executed whenever the loop count is less than
or equal to that length. If altcode:n is specified, the scalar
altcode is executed whenever the loop count is less than or equal
to n.

noaltcode
If noaltcode is specified, the parallelized version of the loop is
always executed regardless of the loop count.

dist:block
Parallelize with block distribution (this is the default).
Contiguous blocks of iterations of a parallelizable loop are
assigned to the available processors.

dist:cyclic
Parallelize with cyclic distribution. The outermost parallelizable
loop in any loop nest is parallelized. If a parallelized loop is
innermost, its iterations are allocated to processors cyclically. For
example, if there are 3 processors executing a loop, processor 0
performs iterations 0, 3, 6, etc.; processor 1 performs iterations
1, 4, 7, etc.; and processor 2 performs iterations 2, 5, 8, etc.

cncall Calls in parallel loops are safe to parallelize. Loops containing
calls are candidates for parallelization. Also, no minimum loop
count threshold must be satisfied before parallelization will
occur, and last values of scalars are assumed to be safe.

noassoc Disables parallelization of loops with reductions.

When linking, the −Mconcur switch must be specified or unresolved
references will result. The NCPUS environment variable controls how
many processors are used to execute parallelized loops.

Note: this option applies only on shared-memory multi-processor systems.

−Mcray[=option[,option,...]]

 (pgf77 and pgf95 only) Force Cray Fortran (CF77) compatibility with
respect to the listed options. Possible values of option include:

82 Chapter 3

 pointer for purposes of optimization, it is assumed that pointer-
based variables do not overlay the storage of any other
variable.

−Mdepchk instructs the compiler to assume unresolved data dependencies actually
conflict.

−Mnodepchk instructs the compiler to assume potential data dependencies do not
conflict. However, if data dependencies exist, this option can produce
incorrect code.

−Mi4 (pgf77 and pgf95 only) the compiler treats INTEGER variables as
INTEGER*4.

−Mipa=<option>[,<option>[,…]] Pass options to the interprocedural analyzer. Note: –Mipa
implies –O2, and the minimum optimization level that can be specified in
combination with –Mipa is –O2. For example, if you specify –Mipa –O1
on the command line, the optimization level will automatically be elevated
to –O2 by the compiler driver. It is typical and recommended to use –
Mipa=fast. Many of the following sub-options can be prefaced with no,
which reverses or disables the effect of the sub-option if it’s included in an
aggregate sub-option like –Mipa=fast. The choices of option are:

[no]align recognize when targets of a pointer dummy are aligned;
 default is noalign.

[no]arg remove arguments replaced by const, ptr; default is noarg.

[no]const perform interprocedural constant propagation; default is
 const.

Command-line Options 83

[no]f90ptr F90/F95 pointer disambiguation across calls; default is
nof90ptr

fast choose IPA options generally optimal for the target.
Use –help to see the settings for –Mipa=fast on a given
target.

force force all objects to re-compile regardless of whether IPA
information has changed.

[no]globals optimize references to global variables; default is
noglobals.

inline[:n] perform automatic function inlining. If the optional :n is
provided, limit inlining to at most n levels. IPA-based
function inlining is performed from leaf routines upward.

ipofile save IPA information in a .ipo file rather than incorporating
it into the object file.

[no]keepobj keep the optimized object files, using file name mangling,
to reduce re-compile time in subsequent builds default is
keepobj.

[no]libinline allow inlining of routines from libraries; implies
–Mipa=inline; default is nolibinline.

[no]libopt allow recompiling and optimization of routines from
libraries using IPA information; default is nolibopt.

[no]localarg equivalent to arg plus externalization of local pointer
targets; default is nolocalarg.

main:<func> specify a function to appear as a global entry point; may
appear multiple times; disables linking.

[no]ptr enable pointer disambiguation across procedure calls;
default is noptr.

[no]pure pure function detection; default is nopure.

required return an error condition if IPA is inhibited for any reason,
rather than the default behavior of linking without IPA
optimization.

84 Chapter 3

safe:[<function>|<library>]
declares that the named function, or all functions in the
named library, are safe; a safe procedure does not call
back into the known procedures and does not change any
known global variables. Without –Mipa=safe, any
unknown procedures will cause IPA to fail.

[no]safeall
declares that all unknown procedures are safe; see
–Mipa=safe; default is nosafeall.

[no]shape
perform Fortran 90 array shape propagation; default is
noshape.

summary
only collect IPA summary information when compiling;
this prevents IPA optimization of this file, but allows
optimization for other files linked with this file.

[no]vestigial remove uncalled (vestigial) functions; default is novestigial.

−Mlre[=assoc | noassoc]

Enables loop-carried redundancy elimination, an optimization that can
reduce the number of arithmetic operations and memory references in
loops.

assoc allow expression re-association; specifying this sub-option can
increase opportunities for loop-carried redundancy elimination
but may alter numerical results.

noassoc disallow expression re-association.

−Mnolre

Disables loop-carried redundancy elimination.

−Mnoframe Eliminates operations that set up a true stack frame pointer for every
function. With this option enabled, you cannot perform a traceback on the
generated code and you cannot access local variables.

Command-line Options 85

−Mnoi4 (pgf77 and pgf95 only) the compiler treats INTEGER variables as
INTEGER*2.

−Mpfi generate profile-feedback instrumentation; this includes extra code to
collect run-time statistics and dump them to a trace file for use in a
subsequent compilation. –Mpfi must also appear when the program is
linked. When the resulting program is executed, a profile feedback trace
file pgfi.out is generated in the current working directory; see –Mpfo.
NOTE: compiling and linking with –Mpfi adds significant runtime
overhead to almost any executable; you should use executables compiled
with –Mpfi only for execution of training runs.

−Mpfo enable profile-feedback optimizations; requires the presence of a pgfi.out
profile-feedback trace file in the current working directory. See –Mpfi.

−Mprefetch[=option [,option...]]

enables generation of prefetch instructions on processors where they are
supported. Possible values for option include:

d:m set the fetch-ahead distance for prefetch instructions to m cache
lines.

n:p set the maximum number of prefetch instructions to generate for
a given loop to p.

nta use the prefetchnta instruction.

plain use the prefetch instruction (default).

t0 use the prefetcht0 instruction.

w use the AMD-specific prefetchw instruction.

−Mnoprefetch

Disables generation of prefetch instructions.

−Mr8 (pgf77, pgf95 and pghpf only) the compiler promotes REAL variables
and constants to DOUBLE PRECISION variables and constants,
respectively. DOUBLE PRECISION elements are 8 bytes in length.

−Mnor8 (pgf77, pgf95 and pghpf only) the compiler does not promote REAL
variables and constants to DOUBLE PRECISION. REAL variables will
be single precision (4 bytes in length).

86 Chapter 3

−Mr8intrinsics (pgf77, and pgf95 only) the compiler treats the intrinsics CMPLX and
REAL as DCMPLX and DBLE, respectively.

−Mnor8intrinsics
(pgf77, and pgf95 only) the compiler does not promote the intrinsics
CMPLX and REAL to DCMPLX and DBLE, respectively.

−Msafeptr[=option[,option,...]]

(pgcc and pgCC only) instructs the C/C++ compiler to override data
dependencies between pointers of a given storage class. Possible values of
option include:

arg instructs the compiler that arrays and pointers are treated with the
same copyin and copyout semantics as Fortran dummy
arguments.

global instructs the compiler that global or external pointers and arrays
do not overlap or conflict with each other and are independent.

local/auto
instructs the compiler that local pointers and arrays do not
overlap or conflict with each other and are independent.

static instructs the compiler that static pointers and arrays do not
overlap or conflict with each other and are independent.

−Mscalarsse Use SSE/SSE2 instructions to perform scalar floating-point arithmetic
(this option is valid only on –tp {p7 | k8-32 | k8-64} targets).

−Mnoscalarsse Do not use SSE/SSE2 instructions to perform scalar floating-point
arithmetic; use x87 instructions instead (this option is not valid in
combination with the –tp k8-64 option).

−Msmart instructs the compiler driver to invoke an AMD64-specific post-pass
assembly optimization utility.

−Mnosmart instructs the compiler not to invoke an AMD64-specific post-pass
assembly optimization utility.

−Munroll[=option [,option...]]

invokes the loop unroller. This also sets the optimization level to 2 if the
level is set to less than 2. The option is one of the following:

Command-line Options 87

c:m instructs the compiler to completely unroll loops with a constant
loop count less than or equal to m, a supplied constant. If this
value is not supplied, the m count is set to 4.

n:u instructs the compiler to unroll u times, a loop that is not
completely unrolled, or has a non-constant loop count. If u is not
supplied, the unroller computes the number of times a candidate
loop is unrolled.

−Mnounroll instructs the compiler not to unroll loops.

−M[no]vect [=option [,option,...]]

(disable) enable the code vectorizer, where option is one of the following:

altcode:n
Instructs the vectorizer to generate alternate scalar code for
vectorized loops. If altcode is specified without arguments, the
vectorizer determines an appropriate cutoff length and generates
scalar code to be executed whenever the loop count is less than
or equal to that length. If altcode:n is specified, the scalar
altcode is executed whenever the loop count is less than or equal
to n.

noaltcode
If noaltcode is specified, the vectorized version of the loop is
always executed regardless of the loop count.

assoc Instructs the vectorizer to enable certain associativity conversions
that can change the results of a computation
due to roundoff error. A typical optimization is to change an
arithmetic operation to an arithmetic operation that is
mathematically correct, but can be computationally different, due
to round-off error

noassoc Instructs the vectorizer to disable associativity conversions.

cachesize:n
Instructs the vectorizer, when performing cache tiling
optimizations, to assume a cache size of n. The default is
n = 262144.

nosizelimit

88 Chapter 3

Generate vector code for all loops where possible regardless
of the number of statements in the loop. This overrides a
heuristic in the vectorizer that ordinarily prevents
vectorization of loops with a number of statements that
exceeds a certain threshold.

smallvect[:n]
Instructs the vectorizer to assume that the maximum vector
length is less than or equal to n. The vectorizer uses this
information to eliminate generation of the stripmine loop for
vectorized loops wherever possible. If the size n is omitted, the
default is 100.
Note: No space is allowed on either side of the colon (:).

sse Instructs the vectorizer to search for vectorizable loops and,
where possible, make use of SSE, SSE2 and prefetch
instructions.

−Mnovect instructs the compiler not to perform vectorization; can be used to
override a previous instance of
–Mvect on the command-line, in particular for cases where –Mvect is
included in an aggregate option such as –fastsse.

−Mnovintr instructs the compiler not to perform idiom recognition or introduce
calls to hand-optimized vector functions.

Default: For arguments that you do not specify, the default optimization control options are as
follows:

depchk nor8
i4 nor8intrinsics

If you do not supply an option to –Mvect, the compiler uses defaults that are dependent upon the
target system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SSE instructions
enabled.

 $ pgf95 –Mvect=sse –Mcache_align myprog.f

Cross-reference: –g, –O

Command-line Options 89

−M<pgflag> Miscellaneous Controls

Syntax:

−Manno annotate the generated assembly code with source code when either the –S
or –Mkeepasm options are used.

−Mbounds enables array bounds checking. If an array is an assumed size array, the
bounds checking only applies to the lower bound. If an array bounds
violation occurs during execution, an error message describing the error is
printed and the program terminates. The text of the error message includes
the name of the array, the location where the error occurred (the source file
and the line number in the source), and information about the out of
bounds subscript (its value, its lower and upper bounds, and its
dimension). For example:
PGFTN-F-Subscript out of range for array a (a.f: 2)

subscript=3, lower bound=1, upper bound=2, dimension=2

−Mnobounds disables array bounds checking.

−Mbyteswapio swap byte-order from big-endian to little-endian or vice versa upon
input/output of Fortran unformatted data files.

−Mchkfpstk instructs the compiler to check for internal consistency of the X86
floating-point stack in the prologue of a function and after returning from a
function or subroutine call. Floating-point stack corruption may occur in
many ways, one of which is Fortran code calling floating-point functions
as subroutines (i.e., with the CALL statement). If the PGI_CONTINUE
environment variable is set upon execution of a program compiled with –
Mchkfpstk, the stack will be automatically cleaned up and execution will
continue. There is a performance penalty associated with the stack
cleanup. If PGI_CONTINUE is set to verbose, the stack will be
automatically cleaned up and execution will continue after printing of a
warning message.

−Mchkptr instructs the compiler to check for pointers that are de-referenced while
initialized to NULL (pgf95 and pghpf only).

90 Chapter 3

−Mchkstk instructs the compiler to check the stack for available space in the prologue
of a function and before the start of a parallel region. Prints a warning
message and aborts the program gracefully if stack space is
insufficient. Useful when many local and private variables are declared in
an OpenMP program.

−Mdll (Windows only) link with the DLL versions of the runtime libraries. This
flag is required when linking with any DLL built by any of The Portland
Group compilers.

−Minfo[=option [,option,...]]

instructs the compiler to produce information on standard error, where
option is one of the following:

all instructs the compiler to produce all available −Minfo
information.

inline instructs the compiler to display information about extracted or
inlined functions. This option is not useful without either the
–Mextract or –Minline option.

ipa instructs the compiler to display information about
interprocedural optimizations.

loop instructs the compiler to display information about loops, such as
information on vectorization.

opt instructs the compiler to display information about optimization.

time instructs the compiler to display compilation statistics.

unroll instructs the compiler to display information about loop
unrolling.

−Mneginfo[=option [,option,...]]

instructs the compiler to produce information on standard error, where
option is one of the following:

concur instructs the compiler to produce all available information on
why loops are not automatically parallelized. In particular, if a
loop is not parallelized due to potential data dependence, the
variable(s) that cause the potential dependence will be listed in
the −Mneginfo messages.

Command-line Options 91

loop instructs the compiler to produce information on why memory
hierarchy optimizations on loops are not performed.

−Minform,level
instructs the compiler to display error messages at the specified
and higher levels, where level is one of the following:

 fatal instructs the compiler to display fatal error messages.

 severe instructs the compiler to display severe and fatal error
messages.

 warn instructs the compiler to display warning, severe and
fatal error messages.

 inform instructs the compiler to display all error messages
(inform, warn, severe and fatal).

−Mkeepasm instructs the compiler to keep the assembly file as compilation continues.
Normally, the assembler deletes this file when it is finished. The assembly
file has the same filename as the source file, but with a .s extension.

−Mlist instructs the compiler to create a listing file. The listing file is filename.lst,
where the name of the source file is filename.f.

−Mnolist the compiler does not create a listing file. This is the default.

−Mmakedll (Windows only) generate a dynamic link library (DLL).

−Mnoopenmp when used in combination with the −mp option, causes the compiler to
ignore OpenMP parallelization directives or pragmas, but still process
SGI-style parallelization directives or pragmas.

−Mnosgimp when used in combination with the −mp option, causes the compiler to
ignore SGI-style parallelization directives or pragmas, but still process
OpenMP parallelization directives or pragmas.

−Mnopgdllmain (Windows only) do not link the module containing the default DllMain()
into the DLL. This flag applies to building DLLs with the PGF95 and
PGHPF compilers. If you want to replace the default DllMain() routine
with a custom DllMain(), use this flag and add the object containing the
custom DllMain() to the link line. The latest version of the default
DllMain() used by PGF95 and PGHPF is included in the Release Notes
for each release; the PGF95- and PGHPF-specific code in this routine

92 Chapter 3

must be incorporated into the custom version of DllMain() to ensure the
appropriate function of your DLL.

−Mpreprocess perform cpp-like pre-processing on assembly and Fortran input source
files.

Default: For arguments that you do not specify, the default miscellaneous options are as follows:

inform warn
nolist nobounds

Usage: In the following example, the compiler includes Fortran source code with the assembly
code.

 $ pgf95 –Manno –S myprog.f

In the following example, the compiler displays information about inlined functions with fewer
than approximately 20 source lines in the source file myprog.f.

 $ pgf95 –Minfo=inline –Minline=20 myprog.f

In the following example, the assembler does not delete the assembly file myprog.s after the
assembly pass.

 $ pgf95 –Mkeepasm myprog.f

In the following example, the compiler creates the listing file myprog.lst.

 $ pgf95 –Mlist myprog.f

In the following example, array bounds checking is enabled.

 $ pgf95 –Mbounds myprog.f

Cross-reference: –m, –S, –V, –v

−mcmodel=medium

(For use only on –tp k8-64 and –tp p7-64 targets) Generate code for the medium memory model in
the X86-64 linux86-64 execution environment. Implies –Mlarge_arrays.

Command-line Options 93

The default small memory model of the linux86-64 environment limits the combined area for a
user’s object or executable to 1GB, with the Linux kernel managing usage of the second 1GB of
address for system routines, shared libraries, stacks, etc. Programs are started at a fixed address,
and the program can use a single instruction to make most memory references.

The medium memory model allows for larger than 2GB data areas, or .bss sections. Program units
compiled using either –mcmodel=medium or –fpic require additional instructions to reference
memory. The effect on performance is a function of the data-use of the application. The
–mcmodel=medium switch must be used at both compile time and link time to create 64-bit
executables. Program units compiled for the default small memory model can be linked into
medium memory model executables as long as they are compiled –fpic, or position-independent.

The linux86-64 environment provides static libxxx.a archive libraries that are built with and
without –fpic, and dynamic libxxx.so shared object libraries that are compiled –fpic. The
–mcmodel=medium linkswitch implies the –fpic switch and will utilize the shared libraries by
default. Similarly, the $PGI/linux86-64/<rel>/lib directory contains the libraries for building
small memory model codes, and the $PGI/linux86-64/<rel>/libso directory contains shared
libraries for building –mcmodel=medium and –fpic executables. Note: It appears from the GNU
tools and documentation that creation of medium memory model shared libraries is not supported.
However, you can create static archive libraries (.a) that are –fpic.

Default: The compiler generates code for the small memory model.

Usage: The following command line requests position independent code be generated, and the
–mcmodel=medium option be passed to the assembler and linker:

$ pgf95 –mcmodel=medium myprog.f

−module <moduledir>

Use the −module option to specify a particular directory in which generated intermediate .mod
files should be placed. If the −module <moduledir> option is present, and USE statements are
present in a compiled program unit, <moduledir> will search for .mod intermediate files prior to
the search in the default (local) directory.

Default: The compiler places .mod files in the current working directory, and searches only in
the current working directory for pre-compiled intermediate .mod files.

Usage: The following command line requests that any intermediate module file produced during
compilation of myprog.f be placed in the directory mymods (in particular, the file
./mymods/myprog.mod will be used):

$ pgf95 -module mymods myprog.f

94 Chapter 3

−mp

Use the −mp option to instruct the compiler to interpret user-inserted OpenMP shared-memory
parallel programming directives and generate an executable file which will utilize multiple
processors in a shared-memory parallel system. See Chapter 5, OpenMP Directives for Fortran
and Chapter 6, OpenMP Pragmas for C and C++, for a detailed description of this programming
model and the associated directives and pragmas.

Default: The compiler ignores user-inserted shared-memory parallel programming directives and
pragmas.

Usage: The following command line requests processing of any shared-memory directives
present in myprog.f:

$ pgf95 -mp myprog.f

Cross-reference: –Mconcur and –Mvect

−mslibs

(Windows only) Use the −mslibs option to instruct the compiler to use the Microsoft linker and
include files, and link against the Microsoft Visual C++ libraries. Microsoft Visual C++ must be
installed in order to use this switch. This switch can be used to link Visual C++-compiled
program units into PGI main programs on Windows.

Default: The compiler uses the PGI-supplied linker and include files and links against PGI-
supplied libraries.

Cross-reference: –msvcrt

−msvcrt

(Windows only) Use the −msvcrt option to instruct the compiler to use Microsoft’s msvcrt.dll
at runtime rather than the default crtdll.dll. These files contain the Microsoft C runtime
library and the default mingw32 C runtime library respectively. It is recommended that you use
the
–msvcrt option in combination with the –mslibs option.

Command-line Options 95

Default: The compiler uses crtdll.dll at runtime.

Cross-reference: –mslibs

−O<level>

Invokes code optimization at the specified level.

Syntax:

–O [level]

Where level is one of the following:

0 creates a basic block for each statement. Neither scheduling nor global
optimization is done. To specify this level, supply a 0 (zero) argument to
the –O option.

1 schedules within basic blocks and performs some register allocations, but
does no global optimization.

2 performs all level-1 optimizations, and also performs global scalar
optimizations such as induction variable elimination and loop invariant
movement.

3 level-three specifies aggressive global optimization. This level performs
all level-one and level-two optimizations and enables more aggressive
hoisting and scalar replacement optimizations that may or may not be
profitable.

Default: Table 3-4 shows the interaction between the –O option, –g option, and –Mvect options.

Table 3-4: Optimization and –O, –g, –Mvect, and –Mconcur Options

Optimize
Option

Debug
Option

–M
Option

Optimization
Level

none none none 1
none none –Mvect 2
none none –Mconcur 2

96 Chapter 3

Optimize
Option

Debug
Option

–M
Option

Optimization
Level

none –g none 0
–O none or –g none 2
–Olevel none or –g none level
–Olevel < 2 none or –g –Mvect 2
–Olevel < 2 none or –g –Mconcur 2

Unoptimized code compiled using the option –O0 can be significantly slower than code generated
at other optimization levels. Like the –Mvect option, the –Munroll option sets the optimization
level to level-2 if no –O or –g options are supplied. For more information on optimization, see
Chapter 2, Optimization & Parallelization.

Usage: In the following example, since no optimization level is specified and a –O option is
specified, the compiler sets the optimization to level-2.

$ pgf95 -O myprog.f

Cross-reference: –g, –M<pgflag>

−o

Names the executable file. Use the –o option to specify the filename of the compiler object file.
The final output is the result of linking.

Syntax:

–o filename

Where filename is the name of the file for the compilation output. The filename must not have a .f
extension.

Default: The compiler creates executable filenames as needed. If you do not specify the –o
option, the default filename is the linker output file a.out.

Usage: In the following example, the executable file is myprog instead of the default a.out.

$ pgf95 myprog.f -o myprog

Cross-reference: –c ,–E, –F, –S

Command-line Options 97

−pc

Syntax:

–pc { 32 | 64 | 80 }

The X86 architecture implements a floating-point stack using 8 80-bit registers. Each register uses
bits 0-63 as the significand, bits 64-78 for the exponent, and bit 79 is the sign bit. This 80-bit real
format is the default format (called the extended format). When values are loaded into the floating
point stack they are automatically converted into extended real format. The precision of the
floating point stack can be controlled, however, by setting the precision control bits (bits 8 and 9)
of the floating control word appropriately. In this way, you can explicitly set the precision to
standard IEEE double-precision using 64 bits, or to single precision using 32 bits.* The default
precision is system dependent. To alter the precision in a given program unit, the main program
must be compiled with the same −pc option. The command line option –pc val lets the
programmer set the compiler’s precision preference. Valid values for val are:

32 single precision

64 double precision

80 extended precision

Extended Precision Option – Operations performed exclusively on the floating-point stack using
extended precision, without storing into or loading from memory, can cause problems with
accumulated values within the extra 16 bits of extended precision values. This can lead to
answers, when rounded, that do not match expected results.

For example, if the argument to sin is the result of previous calculations performed on the
floating-point stack, then an 80-bit value used instead of a 64-bit value can result in slight
discrepancies. Results can even change sign due to the sin curve being too close to an x-intercept
value when evaluated. To maintain consistency in this case, you can assure that the compiler
generates code that calls a function. According to the X86 ABI, a function call must push its
arguments on the stack (in this way memory is guaranteed to be accessed, even if the argument is
an actual constant.) Thus, even if the called function simply performs the inline expansion, using
the function call as a wrapper to sin has the effect of trimming the argument precision down to
the expected size. Using the −Mnobuiltin option on the command line for C accomplishes this task
by resolving all math routines in the library libm, performing a function call of necessity. The

* According to Intel documentation, this only affects the x87 operations of add, subtract, multiply, divide, and
square root. In particular, it does not appear to affect the x87 transcendental instructions.

98 Chapter 3

other method of generating a function call for math routines, but one that may still produce the
inline instructions, is by using the −Kieee switch.

A second example illustrates the precision control problem using a section of code to determine
machine precision:

 program find_precision

 w = 1.0
100 w=w+w
 y=w+1
 z=y-w
 if (z .gt. 0) goto 100
C now w is just big enough that |((w+1)-w)-1| >= 1 ...
 print*,w
 end

In this case, where the variables are implicitly real*4, operations are performed on the floating-
point stack where optimization removed unnecessary loads and stores from memory. The general
case of copy propagation being performed follows this pattern:

 a = x
 y = 2.0 + a

Instead of storing x into a, then loading a to perform the addition, the value of x can be left on the
floating-point stack and added to 2.0. Thus, memory accesses in some cases can be avoided,
leaving answers in the extended real format. If copy propagation is disabled, stores of all left-hand
sides will be performed automatically and reloaded when needed. This will have the effect of
rounding any results to their declared sizes.

For the above program, w has a value of 1.8446744E+19 when executed using default (extended)
precision. If, however, −Kieee is set, the value becomes 1.6777216E+07 (single precision.) This
difference is due to the fact that −Kieee disables copy propagation, so all intermediate results are
stored into memory, then reloaded when needed. Copy propagation is only disabled for floating-
point operations, not integer. With this particular example, setting the −pc switch will also adjust
the result.

The switch −Kieee also has the effect of making function calls to perform all transcendental
operations. Although the function still produces the X86 machine instruction for computation
(unless in C the −Mnobuiltin switch is set), arguments are passed on the stack, which results in a
memory store and load.

Finally, −Kieee also disables reciprocal division for constant divisors. That is, for a/b with
unknown a and constant b, the expression is usually converted at compile time to a*(1/b), thus

Command-line Options 99

turning an expensive divide into a relatively fast scalar multiplication. However, numerical
discrepancies can occur when this optimization is used.

Understanding and correctly using the −pc, −Mnobuiltin, and −Kieee switches should enable you
to produce the desired and expected precision for calculations which utilize floating-point
operations.

Usage:

$ pgf95 –pc 64 myprog.c

−pg

(Linux only) Instructs the compiler to instrument the generated executable for gprof-style sample-
based profiling. Must be used at both the compile and link steps. A gmon.out style trace is
generated when the resulting program is executed, and and can be analyzed using gprof or pgprof.

Syntax:

–pg

Default: The compiler does not instrument the generated executable for gprof-style profiling.

−Q

Selects variations for compilation. There are four uses for the –Q option.
Syntax:

–Qdirdirectory

The first variety, using the dir keyword, lets you supply a directory parameter that indicates the
directory where the compiler driver is located.

–Qoptionprog,opt

The second variety, using the option keyword, lets you supply the option opt to the program
prog. The prog parameter can be one of pgftn, as, or ld.

–Qpathpathname

The third –Q variety, using the path keyword, lets you supply an additional pathname to the
search path for the compiler’s required .o files.

–Qproducesourcetype

100 Chapter 3

The fourth –Q variety, using the produce keyword, lets you choose a stop-after location for the
compilation based on the supplied sourcetype parameter. Valid sourcetypes are: .i, .c, .s and .o.
These indicate respectively, stop-after preprocessing, compiling, assembling, or linking.

Usage: The following examples show the different –Q options.

$ pgf95 –Qproduce .s hello.f

$ pgf95 –Qoption ld,-s hello.f

$ pgf95 –Qpath /home/test hello.f

$ pgf95 –Qdir /home/comp/new hello.f

Cross-reference: –p

−R<directory>

Valid only on Linux and is passed to the linker. Instructs the linker to hard-code the pathname
<directory> into the search path for generated shared object (dynamically linked library)
files. Note that there cannot be a space between R and <directory>.

Cross-reference: –fpic, –shared, –G

−r4 and −r8

Interpret DOUBLE PRECISION variables as REAL (–r4) or REAL variables as DOUBLE PRECISION
(–r8).

Usage:

$ pgf95 –r4 myprog.f

Cross-reference: –i2, –i4, −i8, −nor8

−rc

Specifies the name of the driver startup configuration file. If the file or pathname supplied is not a
full pathname, the path for the configuration file loaded is relative to the $DRIVER path (the path

Command-line Options 101

of the currently executing driver). If a full pathname is supplied, that file is used for the driver
configuration file.

Syntax:
–rc [path] filename

Where path is either a relative pathname, relative to the value of $DRIVER, or a full pathname
beginning with "/". Filename is the driver configuration file.

Default: The driver uses the configuration file .pgirc.

Usage: In the following example, the file .pgf95rctest, relative to /usr/pgi/linux86/bin,
the value of $DRIVER, is the driver configuration file.

$ pgf95 -rc .pgf95rctest myprog.f

Cross-reference: –show

−S

Stops compilation after the compiling phase and writes the assembly-language output to the file
filename.s, where the input file is filename.f.

Default: The compiler produces an executable file.

Usage: In this example, pgf95 produces the file myprog.s in the current directory.

$ pgf95 -S myprog.f

Cross-reference: –c, –E, –F, –Mkeepasm, –o

−shared

Valid only on Linux and is passed to the linker. Instructs the linker to produce a shared object
(dynamically linked library) file.

Cross-reference: –fpic, –G, –R

−show

Produce driver help information describing the current driver configuration.

102 Chapter 3

Usage: In the following example, the driver displays configuration information to the standard
output after processing the driver configuration file.

$ pgf95 -show myprog.f

Cross-reference: –V , –v, –###, –help, –rc

−silent

Do not print warning messages.

Usage: In the following example, the driver does not display warning messages.

$ pgf95 -silent myprog.f

Cross-reference: −v, −V, −w

−time

Print execution times for various compilation steps.

Usage: In the following example, pgf95 prints the execution times for the various compilation
steps.

$ pgf95 -time myprog.f

Cross-reference: –#

−tp

Set the target architecture. By default, the PGI compilers produce code specifically targeted to
the type of processor on which the compilation is performed. In particular, the default is to use all
supported instructions wherever possible when compiling on a given system. As a result,
executables created on a given system may not be useable on previous generation systems (for
example, executables created on a Pentium 4 may fail to execute on a Pentium III or Pentium II).
Processor-specific optimizations can be specified or limited explicitly by using the −tp option. In
this way, it is possible to create executables that are useable on previous generation systems.
With the exception of k8-64, any of these sub-options are valid on any X86 or X86-64 processor-
based system. The k8-64 sub-option is valid only on X86-64 processor-based systems running a

Command-line Options 103

64-bit operating system. Following is a list of possible sub-options to –tp, and the processors they
are intended to target:

k7 generate code for AMD Athlon and compatible processors

k8-32 generate 32-bit code for AMD Athlon64, AMD Opteron and compatible
processors.

k8-64 generate 64-bit code for AMD Athlon64, AMD Opteron and compatible
processors.

p5 generate 32-bit code for Pentium and Athlon compatible processors.

p6 generate 32-bit code for Pentium Pro/II/III and AthlonXP compatible
processors.

p7 generate 32-bit code for Pentium 4 and compatible processors.

p7-64 generate 64-bit code for IntelXeon EM64T and compatible processors.

piii generate 32-bit code for Pentium III and compatible processors, including
support for single-precision vector code using SSE instructions.

px generate 32-bit code that is useable on any X86 processor-based system.

See Table P-2 for a concise list of the features of these processors that distinguish them as
separate targets when using the PGI compilers and tools.

Syntax:

-tp {k7 | k8-32 | k8-64 | p5 | p6 | p7 | p7-64 | piii | px}

Usage: In the following example, pgf95 sets the target architecture to Pentium 4:

$ pgf95 -tp p7 myprog.f

Default: The default style of code generation is auto-selected depending on the type of processor
on which compilation is performed.

−U

Undefines a preprocessor macro. Use the –U option or the #undef preprocessor directive to
undefine macros.

104 Chapter 3

Syntax:

–Usymbol

Where symbol is a symbolic name.

Usage: The following examples undefine the macro test.

$ pgf95 –Utest myprog.F
$ pgf95 –Dtest –Utest myprog.F

Cross-reference: –D,–Mnostdde.

−V[release_number]

Displays additional information, including version messages. If a release_number is appended,
the compiler driver will attempt to compile using the specified release instead of the default
release. There can be no space between –V and release_number. The specified release must be
co-installed with the default release, and must have a release number greater than or equal to 4.1
(the first release for which this functionality is supported).

Usage: The following command-line shows the output using the −V option.

% pgf95 -V myprog.f

The following command-line causes PGF95 to compile using the 5.2 release instead of the
default:

% pgcc –V5.2 myprog.c

Cross-reference: –Minfo, –v

−v

Use the –v option to display the invocations of the compiler, assembler, and linker. These
invocations are command lines created by the compiler driver from the files and the –W options you
specify on the compiler command-line.

Default: The compiler does not display individual phase invocations.

Cross-reference: –Minfo, –V

Command-line Options 105

−W

Passes arguments to a specific phase. Use the –W option to specify options for the assembler,
compiler or linker.

Note: A given PGI compiler command invokes the compiler driver, which parses the command-
line and generates the appropriate commands for the compiler, assembler and linker.

Syntax:

–W {0 | a | l },option[, option...]

Where:

0 (the number zero) specifies the compiler.

a specifies the assembler.

l (lowercase letter l) specifies the linker.

option is a string that is passed to and interpreted by the compiler, assembler or
linker. Options separated by commas are passed as separate command line
arguments.

Note: You cannot have a space between the –W and the single-letter pass
identifier, between the identifier and the comma, or between the comma
and the option.

Usage: In the following example the linker loads the text segment at address 0xffc00000 and
the data segment at address 0xffe00000.

$ pgf95 -Wl,-k,-t,0xffc00000,-d,0xffe00000 myprog.f

−w

Do not print warning messages.

106 Chapter 3

3.2 C and C++ -specific Compiler Options
The following options are specific to PGCC C and/or C++.

−A

(pgCC only) Using this option, the PGC++ compiler accepts code conforming to the proposed
ANSI C++ standard. It issues errors for non-conforming code.

Default: By default, the compiler accepts code conforming to the standard C++ Annotated
Reference Manual.

Usage: The following command-line requests ANSI conforming C++.

 $ pgCC –A hello.cc

Cross-references: –b and +p.

−−[no_]alternative_tokens

(pgCC only) Enable or disable recognition of alternative tokens. These are tokens that make it
possible to write C++ without the use of the , , [,], #, &, , ^, and characters. The alternative tokens
include the operator keywords (e.g., and, bitand, etc.) and digraphs. The default behavior is
−−no_alternative_tokens.

−B

(pgcc and pgCC only) Enable use of C++ style comments starting with // in C program units.

Default: The PGCC ANSI and K&R C compiler does not allow C++ style comments.

Usage: In the following example the compiler accepts C++ style comments.

 $ pgcc -B myprog.cc

Command-line Options 107

−b

(pgCC only) Enable compilation of C++ with cfront 2.1 compatibility. This causes the compiler
to accept language constructs that, while not part of the C++ language definition, are accepted by
the AT&T C++ Language System (cfront release 2.1). This option also enables acceptance of
anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage: In the following example the compiler accepts cfront constructs.

 $ pgCC -b myprog.cc

Cross-references: ––cfront2.1, –b3 , ––cfront3.0, +p, –A

−b3

(pgCC only) Enable compilation of C++ with cfront 3.0 compatibility. This causes the compiler
to accept language constructs that, while not part of the C++ language definition, are accepted by
the AT&T C++ Language System (cfront release 3.0). This option also enables acceptance of
anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage: In the following example, the compiler accepts cfront constructs.

 $ pgCC -b3 myprog.cc

Cross-references: ––cfront2.1, –b , ––cfront3.0 , +p, –A

−−[no_]bool

(pgCC only) Enable or disable recognition of bool. The default value is −−bool.

108 Chapter 3

−−cfront_2.1

(pgCC only) Enable compilation of C++ with cfront 2.1 compatibility. This causes the compiler
to accept language constructs that, while not part of the C++ language definition, are accepted by
the AT&T C++ Language System (cfront release 2.1). This option also enables acceptance of
anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage: In the following example, the compiler accepts cfront constructs.

 $ pgCC --cfront_2.1 myprog.cc

Cross-references: –b, –b3 , ––cfront3.0, +p, –A

−−cfront_3.0

(pgCC only) Enable compilation of C++ with cfront 3.0 compatibility. This causes the compiler
to accept language constructs that, while not part of the C++ language definition, are accepted by
the AT&T C++ Language System (cfront release 3.0). This option also enables acceptance of
anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage: In the following example, the compiler accepts cfront constructs.

 $ pgCC ––cfront_3.0 myprog.cc

Cross-references: ––cfront2.1, –b , –b3 , +p, –A

−−create_pch filename

(pgCC only) If other conditions are satisfied, create a precompiled header file with the specified
name. If −−pch (automatic PCH mode) appears on the command line following this option, its
effect is erased.

Command-line Options 109

−−diag_suppress tag

(pgCC only) Override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

−−diag_remark tag

(pgCC only) Override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

−−diag_warning tag

(pgCC only) Override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

−−diag_error tag

(pgCC only) Override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

−−display_error_number

(pgCC only) Display the error message number in any diagnostic messages that are generated.
The option may be used to determine the error number to be used when overriding the severity of
a diagnostic message.

−−[no_]exceptions

(pgCC only) Enable/disable exception handling support. The default is −−exceptions.

110 Chapter 3

−−[no]llalign

(pgCC only) Do/don’t align long long integers on long long boundaries. The default is
−−llalign.

−M

Generate a list of make dependencies and print them to stdout. Compilation stops after the pre-
processing phase.

−MD

Generate a list of make dependencies and print them to the file <file>.d, where <file> is the
name of the file under compilation.

−−optk_allow_dollar_in_id_chars

(pgCC only) Accept dollar signs ($) in identifiers.

−P

Stops compilation after the preprocessing phase. Use the –P option to halt the compilation process
after preprocessing and write the preprocessed output to the file filename.i, where the input file is
filename.c or filename.cc.

Use the –suffix option with this option to save the intermediate file in a file with the specified
suffix.

Default: The compiler produces an executable file.

Usage: In the following example, the compiler produces the preprocessed file myprog.i in the
current directory.

 $ pgCC -P myprog.cc

Cross-references: –C,–c,–E, –Mkeepasm, –o, –S

Command-line Options 111

−−pch

(pgCC only) Automatically use and/or create a precompiled header file. If −−use_pch or
−−create_pch (manual PCH mode) appears on the command line following this option, its effect
is erased.

−−pch_dir directoryname

(pgCC only) The directory in which to search for and/or create a precompiled header file. This
option may be used with automatic PCH mode (−−pch) or manual PCH mode (−−create_pch or
−−use_pch).

−−[no_]pch_messages

(pgCC only) Enable or disable the display of a message indicating that a precompiled header file
was created or used in the current compilation.

−−preinclude=<filename>

(pgCC only) Specifies the name of a file to be included at the beginning of the compilation. This
option can be used to set system-dependent macros and types, for example.

−−use_pch filename

(pgCC only) Use a precompiled header file of the specified name as part of the current
compilation. If −−pch (automatic PCH mode) appears on the command line following this option,
its effect is erased.

112 Chapter 3

−−[no_]using_std

(pgCC only) Enable or disable implicit use of the std namespace when standard header files are
included.

Default: The default is −−using_std.

Usage: The following command-line disables implicit use of the std namespace:

 $ pgCC –-no_using_std hello.cc

−t

(pgCC only) Control instantiation of template functions.

Syntax:

–t [arg]

where arg is one of the following:

all Instantiates all functions whether or not they are used.

local Instantiates only the functions that are used in this compilation, and forces
those functions to be local to this compilation.

Note: This may cause multiple copies of local static variables. If this
occurs, the program may not execute correctly.

none Instantiates no functions. (this is the default)

used Instantiates only the functions that are used in this compilation.

Usage: In the following example, all templates are instantiated.

 $ pgCC -tall myprog.cc

Function Inlining 113

Chapter 4
Function Inlining
Function inlining replaces a call to a function or a subroutine with the body of the function or
subroutine. This can speed up execution by eliminating parameter passing and function/subroutine
call and return overhead. It also allows the compiler to optimize the function with the rest of the
code. Note that using function inlining indiscriminately can result in much larger code size and no
increase in execution speed.

The PGI compilers provide two categories of inlining:

• Automatic inlining − During the compilation process, a hidden pass precedes the
compilation pass. This hidden pass extracts functions that are candidates for inlining.
The inlining of functions occurs as the source files are compiled.

• Inline libraries − You create inline libraries, for example using the pgf95 command and
the –Mextract and –o options. There is no hidden extract pass but you must ensure that
any files that depend on the inline library use the latest version of the inline library.

There are important restrictions on inlining. Inlining only applies to certain types of functions.
Refer to Section 4.5 Restrictions on Inlining, at the end of this chapter for more details on
function inlining limitations.

4.1 Invoking Function Inlining
To invoke the function inliner, use the –Minline option. If you do not specify an inline library, the
compiler performs a special prepass on all source files named on the compiler command line
before it compiles any of them. This pass extracts functions that meet the requirements for
inlining and puts them in a temporary inline library for use by the compilation pass.

Several –Minline options let you determine the selection criteria for functions to be inlined. These
selection criteria include:

except:func Inline all eligible functions except func, a function in the source text.
Multiple functions can be listed, comma-separated.

 [name:]func A function name, which is a string matching func, a function in the source
text.

114 Chapter 4

[size:]n A size, which instructs the compiler to select functions with a statement
count less than or equal to n, the specified size.

Note: the size n may not exactly equal the number of statements in a
selected function (the size parameter is used as a rough gauge).

levels:n A level number, which represents the number of function calling levels to
be inlined. The default number is one (1). Using a level greater than one
indicates that function calls within inlined functions may be replaced with
inlined code. This allows the function inliner to automatically perform a
sequence of inline and extract processes.

[lib:]file.ext A library file name. This instructs the inliner to inline the functions within
the library file file.ext. Create the library file using the –Mextract option. If
no inline library is specified, functions are extracted from a temporary
library created during an extract prepass.

If you specify both a function name and a size n, the compiler inlines functions that match the
function name or have n or fewer statements.

If a keyword name:, lib: or size: is omitted, then a name with a period is assumed to be an inline
library, a number is assumed to be a size, and a name without a period is assumed to be a function
name.

In the following example, the compiler inlines functions with fewer than approximately 100
statements in the source file myprog.f and writes the executable code in the default output file
a.out.

 $ pgf95 -Minline=size:100 myprog.f

Refer to Chapter 3, Command Line Options, for more information on the –Minline options.

4.1.1 Using an Inline Library
If you specify one or more inline libraries on the command line with the –Minline option, the
compiler does not perform an initial extract pass. The compiler selects functions to inline from the
specified inline library. If you also specify a size or function name, all functions in the inline
library meeting the selection criteria are selected for inline expansion at points in the source text
where they are called.

If you do not specify a function name or a size limitation for the –Minline option, the compiler
inlines every function in the inline library that matches a function in the source text.

Function Inlining 115

In the following example, the compiler inlines the function proc from the inline library lib.il and
writes the executable code in the default output file a.out.

 $ pgf95 -Minline=name:proc,lib:lib.il myprog.f

The following command line is equivalent to the line above, the only difference in this example is
that the name: and lib: inline keywords are not used. The keywords are provided so you can avoid
name conflicts if you use an inline library name that does not contain a period. Otherwise, without
the keywords, a period lets the compiler know that the file on the command line is an inline
library.

 $ pgf95 -Minline=proc,lib.il myprog.f

4.2 Creating an Inline Library
You can create or update an inline library using the –Mextract command-line option. If you do
not specify a selection criteria along with the –Mextract option, the compiler attempts to extract
all subprograms.

When you use the –Mextract option, only the extract phase is performed; the compile and link
phases are not performed. The output of an extract pass is a library of functions available for
inlining. It is placed in the inline library file specified on the command line with the –o filename
specification. If the library file exists, new information is appended to it. If the file does not exist,
it is created.

You can use the –Minline option with the –Mextract option. In this case, the extracted library of
functions can have other functions inlined into the library. Using both options enables you to
obtain more than one level of inlining. In this situation, if you do not specify a library with the
–Minline option, the inline process consists of two extract passes. The first pass is a hidden pass
implied by the –Minline option, during which the compiler extracts functions and places them into
a temporary library. The second pass uses the results of the first pass but puts its results into the
library that you specify with the –o option.

4.2.1 Working with Inline Libraries
An inline library is implemented as a directory with each inline function in the library stored as a
file using an encoded form of the inlinable function.

A special file named TOC in the inline library directory serves as a table of contents for the inline
library. This is a printable, ASCII file which can be examined to find out information about the
library contents, such as names and sizes of functions, the source file from which they were
extracted, the version number of the extractor which created the entry, etc.

Libraries and their elements can be manipulated using ordinary system commands.

116 Chapter 4

• Inline libraries can be copied or renamed.
• Elements of libraries can be deleted or copied from one library to another.
• The ls command can be used to determine the last-change date of a library entry.

Dependencies in Makefiles–When a library is created or updated using one of the PGI compilers,
the last-change date of the library directory is updated. This allows a library to be listed as a
dependence in a makefile (and ensures that the necessary compilations will be performed when a
library is changed).

4.2.2 Updating Inline Libraries - Makefiles
If you use inline libraries you need to be certain that they remain up to date with the source files
into which they are inlined. One way to assure inline libraries are updated is to include them in a
makefile. The makefile fragment in Example 4-1 assumes the file utils.f contains a number of
small functions used in the files parser.f and alloc.f. The makefile also maintains the inline library
utils.il. The makefile updates the library whenever you change utils.f or one of the include files it
uses. In turn, the makefile compiles parser.f and alloc.f whenever you update the library.

SRC = mydir
FC = pgf95
FFLAGS = –O2
main.o: $(SRC)/main.f $(SRC)/global.h
 $(FC) $(FFLAGS) -c $(SRC)/main.f

utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
 $(FC) $(FFLAGS) -c $(SRC)/utils.f

utils.il: $(SRC)/utils.f $(SRC)global.h $(SRC)/utils.h
 $(FC) $(FFLAGS) -Mextract=15 -o utils.il

parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il
 $(FC) $(FFLAGS) -Minline=utils.il -c
 $(SRC)/parser.f
alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.il
 $(FC) $(FFLAGS) -Minline=utils.il -c
 $(SRC)/alloc.f
myprog: main.o utils.o parser.o alloc.o
 $(FC) -o myprog main.o utils.o parser.o alloc.o

Example 4-1: Sample Makefile

Function Inlining 117

4.3 Error Detection during Inlining
To request inlining information from the compiler when you invoke the inliner, specify the
–Minfo=inline option. For example:

$ pgf95 -Minline=mylib.il -Minfo=inline myext.f

4.4 Examples
Assume the program dhry consists of a single source file dhry.f. The following command line
builds an executable file for dhry in which proc7 is inlined wherever it is called:

$ pgf95 dhry.f -Minline=proc7

The following command lines build an executable file for dhry in which proc7 plus any functions
of approximately 10 or fewer statements are inlined (one level only). Note that the specified
functions are inlined only if they are previously placed in the inline library, temp.il, during the
extract phase.

$ pgf95 dhry.f -Mextract -o temp.il
$ pgf95 dhry.f -Minline=10,Proc7,temp.il

Assume the program fibo.f contains a single function fibo that calls itself recursively. The
following command line creates the file fibo.o in which fibo is inlined into itself:

$ pgf95 fibo.f -c –Mrecursive -Minline=fibo

Because this version of fibo recurses only half as deeply, it executes noticeably faster.

Using the same source file dhry.f, the following example builds an executable for dhry in which
all functions of roughly ten or fewer statements are inlined. Two levels of inlining are performed.
This means that if function A calls function B, and B calls C, and both B and C are inlinable, then
the version of B which is inlined into A will have had C inlined into it.

$ pgf95 dhry.f -Minline=size:10,levels:2

4.5 Restrictions on Inlining
The following Fortran subprograms cannot be extracted:

• Main or BLOCK DATA programs.

• Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or EQUIVALENCE
statements.

118 Chapter 4

• Subprograms containing FORMAT statements.

• Subprograms containing multiple entries.
A Fortran subprogram is not inlined if any of the following applies:

• It is referenced in a statement function.

• A common block mismatch exists; i.e., the caller must contain all common blocks specified
in the callee, and elements of the common blocks must agree in name, order, and type (except
that the caller's common block can have additional members appended to the end of the
common block).

• An argument mismatch exists; i.e., the number and type (size) of actual and formal
parameters must be equal.

• A name clash exists; e.g., a call to subroutine xyz in the extracted subprogram and a variable
named xyz in the caller.

The following types of C and C++ functions cannot be inlined:

• Functions whose return type is a struct data type, or functions which have a struct
argument

• Functions containing switch statements

• Functions which reference a static variable whose definition is nested within the function

• Function which accept a variable number of arguments

Certain C/C++ functions can only be inlined into the file that contains their definition:

• Static functions

• Functions which call a static function

• Functions which reference a static variable

OpenMP Directives for Fortran 119

Chapter 5
OpenMP Directives for Fortran
The PGF77 and PGF95 Fortran compilers support the OpenMP Fortran Application Program
Interface. The OpenMP shared-memory parallel programming model is defined by a collection of
compiler directives, library routines, and environment variables that can be used to specify shared-
memory parallelism in Fortran programs. The directives include a parallel region construct for
writing coarse grain SPMD programs, work-sharing constructs which specify that DO loop
iterations should be split among the available threads of execution, and synchronization constructs.
The data environment is controlled using clauses on the directives or with additional directives.
Run-time library routines are provided to query the parallel runtime environment, for example to
determine how many threads are participating in execution of a parallel region. Finally,
environment variables are provided to control the execution behavior of parallel programs. For
more information on OpenMP, see http://www.openmp.org.

For an introduction to how to execute programs that use multiple processors along with some
pointers to example code, see Section 1.4 Parallel Programming Using the PGI Compilers. The
file ftp://ftp.pgroup.com/pub/SMP/fftpde.tar.gz contains a more advanced self-guided
tutorial on how to parallelize the NAS FT fast Fourier transform benchmark using OpenMP
directives. You can retrieve it using a web browser, and unpack it using the following commands
within a shell command window:

% gunzip fftpde.tar.gz
% tar xvf fftpde.tar

Follow the instructions in the README file to work through the tutorial.

5.1 Parallelization Directives
Parallelization directives are comments in a program that are interpreted by the PGI Fortran
compilers when the option −mp is specified on the command line. The form of a parallelization
directive is:

sentinel directive_name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must be !$OMP,
C$OMP, or *$OMP, must start in column 1 (one), and must appear as a single word without
embedded white space. The sentinel marking a DOACROSS directive is C$. Standard Fortran syntax
restrictions (line length, case insensitivity, etc.) apply to the directive line. Initial directive lines

http://www.openmp.org/

120 Chapter 5

must have a space or zero in column six and continuation directive lines must have a character
other than space or zero in column six. Continuation lines for C$DOACROSS directives are specified
using the C$& sentinel.

The order in which clauses appear in the parallelization directives is not significant. Commas
separate clauses within the directives, but commas are not allowed between the directive name and
the first clause. Clauses on directives may be repeated as needed subject to the restrictions listed in
the description of each clause.

The compiler option −mp enables recognition of the parallelization directives. The use of this
option also implies:

−Mreentrant local variables are placed on the stack and optimizations that may result in
non-reentrant code are disabled (e.g., −Mnoframe);

−Miomutex critical sections are generated around Fortran I/O statements.

Many of the directives are presented in pairs and must be used in pairs. In the examples given with
each section, the routines omp_get_num_threads() and omp_get_thread_num() are used,
refer to Section 5.16 Run-time Library Routines for more information. They return the number of
threads currently in the team executing the parallel region and the thread number within the team,
respectively.

5.2 PARALLEL ... END PARALLEL
The OpenMP PARALLEL END PARALLEL directive is supported using the following syntax.

Syntax:

!$OMP PARALLEL [Clauses]
< Fortran code executed in body of parallel region >
!$OMP END PARALLEL

Clauses:

PRIVATE(list)
SHARED(list)
DEFAULT(PRIVATE | SHARED | NONE)
FIRSTPRIVATE(list)
REDUCTION([{operator | intrinsic}:] list)
COPYIN (list)
IF (scalar_logical_expression)

This directive pair declares a region of parallel execution. It directs the compiler to create an
executable in which the statements between PARALLEL and END PARALLEL are executed by

OpenMP Directives for Fortran 121

multiple lightweight threads. The code that lies between PARALLEL and END PARALLEL is called a
parallel region.

The OpenMP parallelization directives support a fork/join execution model in which a single
thread executes all statements until a parallel region is encountered. At the entrance to the parallel
region, a system-dependent number of symmetric parallel threads begin executing all statements in
the parallel region redundantly. These threads share work by means of work-sharing constructs
such as parallel DO loops (see below). The number of threads in the team is controlled by the
OMP_NUM_THREADS environment variable. If OMP_NUM_THREADS is not defined, the program will
execute parallel regions using only one processor. Branching into or out of a parallel region is not
supported.

All other shared-memory parallelization directives must occur within the scope of a parallel
region. Nested PARALLEL ... END PARALLEL directive pairs are not supported and are ignored.
The END PARALLEL directive denotes the end of the parallel region, and is an implicit barrier.
When all threads have completed execution of the parallel region, a single thread resumes
execution of the statements that follow.

Note: By default, there is no work distribution in a parallel region. Each
active thread executes the entire region redundantly until it encounters a
directive that specifies work distribution. For work distribution, see the DO,
PARALLEL DO, or DOACROSS directives.

 PROGRAM WHICH_PROCESSOR_AM_I
 INTEGER A(0:1)
 INTEGER omp_get_thread_num
 A(0) = -1
 A(1) = -1
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()
!$OMP END PARALLEL
 PRINT *, “A(0)=”,A(0), “ A(1)=”,A(1)
 END

The variables specified in a PRIVATE list are private to each thread in a team. In effect, the
compiler creates a separate copy of each of these variables for each thread in the team. When an
assignment to a private variable occurs, each thread assigns to its local copy of the variable. When
operations involving a private variable occur, each thread performs the operations using its local
copy of the variable.

122 Chapter 5

Important points about private variables are:

• Variables declared private in a parallel region are undefined upon entry to the parallel region.
If the first use of a private variable within the parallel region is in a right-hand-side expression,
the results of the expression will be undefined (i.e., this is probably a coding error).

• Likewise, variables declared private in a parallel region are undefined when serial execution
resumes at the end of the parallel region.

The variables specified in a SHARED list are shared between all threads in a team, meaning that all
threads access the same storage area for SHARED data.

The DEFAULT clause lets you specify the default attribute for variables in the lexical extent of the
parallel region. Individual clauses specifying PRIVATE, SHARED, etc. status override the declared
DEFAULT. Specifying DEFAULT(NONE) declares that there is no implicit default, and in this case,
each variable in the parallel region must be explicitly listed with an attribute of PRIVATE, SHARED,
FIRSTPRIVATE, LASTPRIVATE, or REDUCTION.

Variables that appear in the list of a FIRSTPRIVATE clause are subject to the same semantics as
PRIVATE variables, but in addition, are initialized from the original object existing prior to
entering the parallel region. Variables that appear in the list of a REDUCTION clause must be
SHARED. A private copy of each variable in list is created for each thread as if the PRIVATE clause
had been specified. Each private copy is initialized according to the operator as specified in Table
5-1:

Table 5-1: Initialization of REDUCTION Variables

Operator / Intrinsic Initialization

+ 0

* 1

− 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest Representable Number

MIN Largest Representable Number

IAND All bits on

IOR 0

IEOR 0

OpenMP Directives for Fortran 123

At the end of the parallel region, a reduction is performed on the instances of variables appearing
in list using operator or intrinsic as specified in the REDUCTION clause. The initial value of each
REDUCTION variable is included in the reduction operation. If the {operator | intrinsic}:
portion of the REDUCTION clause is omitted, the default reduction operator is “+” (addition).

The COPYIN clause applies only to THREADPRIVATE common blocks. In the presence of the
COPYIN clause, data from the master thread’s copy of the common block is copied to the
threadprivate copies upon entry to the parallel region.

In the presence of an IF clause, the parallel region will be executed in parallel only if the
corresponding scalar_logical_expression evaluates to .TRUE.. Otherwise, the code within the
region will be executed by a single processor regardless of the value of the environment variable
OMP_NUM_THREADS.

5.3 CRITICAL ... END CRITICAL
The OpenMP END CRITICAL directive uses the following syntax.

!$OMP CRITICAL [(name)]
< Fortran code executed in body of critical section >
!$OMP END CRITICAL [(name)]

Within a parallel region, you may have code that will not execute properly when multiple threads
act upon the same sub-region of code. This is often due to a shared variable that is written and then
read again.

The CRITICAL ... END CRITICAL directive pair defines a subsection of code within a parallel
region, referred to as a critical section, which will be executed one thread at a time. The optional
name argument identifies the critical section. The first thread to arrive at a critical section will be
the first to execute the code within the section. The second thread to arrive will not begin
execution of statements in the critical section until the first thread has exited the critical section.
Likewise each of the remaining threads will wait its turn to execute the statements in the critical
section.

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out
of a critical section is illegal. If a name argument appears on a CRITICAL directive, the same name
must appear on the END CRITICAL directive.

 PROGRAM CRITICAL_USE
 REAL A(100,100), MX, LMX
 INTEGER I, J
 MX = -1.0
 LMX = -1.0

124 Chapter 5

 CALL RANDOM_SEED()
 CALL RANDOM_NUMBER(A)
!$OMP PARALLEL PRIVATE(I), FIRSTPRIVATE(LMX)
!$OMP DO
 DO J=1,100
 DO I=1,100
 LMX = MAX(A(I,J), LMX)
 ENDDO
 ENDDO
!$OMP CRITICAL
 MX = MAX(MX, LMX)
!$OMP END CRITICAL
!$OMP END PARALLEL
 PRINT *, “MAX VALUE OF A IS “, MX
 END

Note that this program could also be implemented without the critical region by declaring MX as a
reduction variable and performing the MAX calculation in the loop using MX directly rather than
using LMX. See Sections 5.2 PARALLEL ... END PARALLEL and 5.6 DO ... END DO for more
information on how to use the REDUCTION clause on a parallel DO loop.

5.4 MASTER ... END MASTER
The OpenMP END MASTER directive uses the following syntax.

!$OMP MASTER
< Fortran code in body of MASTER section >
!$OMP END MASTER

In a parallel region of code, there may be a sub-region of code that should execute only on the
master thread. Instead of ending the parallel region before this subregion and then starting it up
again after this subregion, the MASTER ... END MASTER directive pair let you conveniently
designate code that executes on the master thread and is skipped by the other threads. There is no
implied barrier on entry to or exit from a MASTER ... END MASTER section of code. Nested
master sections are ignored. Branching into or out of a master section is not supported.

PROGRAM MASTER_USE
 INTEGER A(0:1)
 INTEGER omp_get_thread_num
 A=-1
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()

OpenMP Directives for Fortran 125

!$OMP MASTER
 PRINT *, “YOU SHOULD ONLY SEE THIS ONCE”
!$OMP END MASTER
!$OMP END PARALLEL
 PRINT *, “A(0)=“, A(0), “ A(1)=“, A(1)
 END

5.5 SINGLE ... END SINGLE
The OpenMP SINGLE END SINGLE directive uses the following syntax.

!$OMP SINGLE [Clauses]
< Fortran code in body of SINGLE processor section >
!$OMP END SINGLE [NOWAIT]

Clauses:

PRIVATE(list)
FIRSTPRIVATE(list)

In a parallel region of code, there may be a sub-region of code that will only execute correctly on a
single thread. Instead of ending the parallel region before this subregion and then starting it up
again after this subregion, the SINGLE ... END SINGLE directive pair lets you conveniently
designate code that executes on a single thread and is skipped by the other threads. There is an
implied barrier on exit from a SINGLE ... END SINGLE section of code unless the optional
NOWAIT clause is specified.

Nested single process sections are ignored. Branching into or out of a single process section is not
supported.

PROGRAM SINGLE_USE
 INTEGER A(0:1)
 INTEGER omp_get_thread_num()
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()
!$OMP SINGLE
 PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"
!$OMP END SINGLE
!$OMP END PARALLEL
 PRINT *, "A(0)=", A(0), " A(1)=", A(1)
 END

126 Chapter 5

The PRIVATE and FIRSTPRIVATE clauses are as described in Section 5.2 PARALLEL ... END
PARALLEL.

5.6 DO ... END DO
The OpenMP DO END DO directive uses the following syntax.

Syntax:

!$OMP DO [Clauses]
< Fortran DO loop to be executed in parallel >
!$OMP END DO [NOWAIT]

Clauses:

PRIVATE(list)
FIRSTPRIVATE(list)
LASTPRIVATE(list)
REDUCTION({operator | intrinsic } : list)
SCHEDULE (type [, chunk])
ORDERED

The real purpose of supporting parallel execution is the distribution of work across the available
threads. You can explicitly manage work distribution with constructs such as:

IF (omp_get_thread_num() .EQ. 0) THEN
 …
ELSE IF (omp_get_thread_num() .EQ. 1) THEN
 …
ENDIF

However, these constructs are not in the form of directives. The DO ... END DO directive pair
provides a convenient mechanism for the distribution of loop iterations across the available threads
in a parallel region. Items to note about clauses are:

OpenMP Directives for Fortran 127

• Variables declared in a PRIVATE list are treated as private to each processor participating in
parallel execution of the loop, meaning that a separate copy of the variable exists on each
processor.

• Variables declared in a FIRSTPRIVATE list are PRIVATE, and in addition are initialized from
the original object existing before the construct.

• Variables declared in a LASTPRIVATE list are PRIVATE, and in addition the thread that
executes the sequentially last iteration updates the version of the object that existed before the
construct.

• The REDUCTION clause is as described in Section 5.2 PARALLEL ... END PARALLEL.

• The SCHEDULE clause is explained in the following section.

• If ORDERED code blocks are contained in the dynamic extent of the DO directive, the
ORDERED clause must be present. For more information on ORDERED code blocks, see
Section 5.12 ORDERED.

The DO ... END DO directive pair directs the compiler to distribute the iterative DO loop
immediately following the !$OMP DO directive across the threads available to the program. The DO
loop is executed in parallel by the team that was started by an enclosing parallel region. If the
!$OMP END DO directive is not specified, the !$OMP DO is assumed to end with the enclosed DO
loop. DO ... END DO directive pairs may not be nested. Branching into or out of a !$OMP DO
loop is not supported.

By default, there is an implicit barrier after the end of the parallel loop; the first thread to complete
its portion of the work will wait until the other threads have finished their portion of work. If
NOWAIT is specified, the threads will not synchronize at the end of the parallel loop.

Other items to note about !$OMP DO loops:

• The DO loop index variable is always private.

• !$OMP DO loops must be executed by all threads participating in the parallel region or none at
all.

• The END DO directive is optional, but if it is present it must appear immediately after the end
of the enclosed DO loop.

PROGRAM DO_USE
 REAL A(1000), B(1000)
 DO I=1,1000
 B(I) = FLOAT(I)
 ENDDO

128 Chapter 5

!$OMP PARALLEL
!$OMP DO
 DO I=1,1000
 A(I) = SQRT(B(I));
 ENDDO
 …
!$OMP END PARALLEL
 …
 END

The SCHEDULE clause specifies how iterations of the DO loop are divided up between processors.
Given a SCHEDULE (type [, chunk]) clause, type can be STATIC, DYNAMIC, GUIDED, or
RUNTIME.

These are defined as follows:

• When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in contiguous
blocks of size chunk. The blocks of iterations are statically assigned to threads in a round-
robin fashion in order of the thread ID numbers. The chunk must be a scalar integer
expression. If chunk is not specified, a default chunk size is chosen equal to:

 (number_of_iterations + omp_num_threads() - 1) / omp_num_threads()

• When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in
contiguous blocks of size chunk. As each thread finishes a piece of the iteration space, it
dynamically obtains the next set of iterations. The chunk must be a scalar integer
expression. If no chunk is specified, a default chunk size is chosen equal to 1.

• When SCHEDULE (GUIDED, chunk) is specified, the chunk size is reduced in an
exponentially decreasing manner with each dispatched piece of the iteration space.
Chunk specifies the minimum number of iterations to dispatch each time, except when
there are less than chunk iterations remaining to be processed, at which point all
remaining iterations are assigned. If no chunk is specified, a default chunk size is chosen
equal to 1.

• When SCHEDULE (RUNTIME) is specified, the decision regarding iteration scheduling is
deferred until runtime. The schedule type and chunk size can be chosen at runtime by
setting the OMP_SCHEDULE environment variable. If this environment variable is not set,
the resulting schedule is equivalent to SCHEDULE(STATIC).

OpenMP Directives for Fortran 129

5.7 BARRIER
The OpenMP BARRIER directive uses the following syntax.

!$OMP BARRIER

There may be occasions in a parallel region, when it is necessary that all threads complete work to
that point before any thread is allowed to continue. The BARRIER directive synchronizes all
threads at such a point in a program. Multiple barrier points are allowed within a parallel region.
The BARRIER directive must either be executed by all threads executing the parallel region or by
none of them.

5.8 DOACROSS
The C$DOACROSS directive is not part of the OpenMP standard, but is supported for compatibility
with programs parallelized using legacy SGI-style directives.

Syntax:

C$DOACROSS [Clauses]
< Fortran DO loop to be executed in parallel >

Clauses:

[{PRIVATE | LOCAL} (list)]
[{SHARED | SHARE} (list)]
[MP_SCHEDTYPE={SIMPLE | INTERLEAVE}]
[CHUNK=<integer_expression>]
[IF (logical_expression)]

The C$DOACROSS directive has the effect of a combined parallel region and parallel DO loop
applied to the loop immediately following the directive. It is very similar to the OpenMP
PARALLEL DO directive, but provides for backward compatibility with codes parallelized for SGI
systems prior to the OpenMP standardization effort. The C$DOACROSS directive must not appear
within a parallel region. It is a shorthand notation that tells the compiler to parallelize the loop to
which it applies, even though that loop is not contained within a parallel region. While this syntax
is more convenient, it should be noted that if multiple successive DO loops are to be parallelized it
is more efficient to define a single enclosing parallel region and parallelize each loop using the
OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a C$DOACROSS loop is treated the same as a private
variable in a parallel region or DO (see above). A variable declared SHARED or SHARE to a
C$DOACROSS loop is shared among the threads, meaning that only 1 copy of the variable exists to
be used and/or modified by all of the threads. This is equivalent to the default status of a variable

130 Chapter 5

that is not listed as PRIVATE in a parallel region or DO (this same default status is used in
C$DOACROSS loops as well).

5.9 PARALLEL DO
The OpenMP PARALLEL DO directive uses the following syntax.

Syntax:

!$OMP PARALLEL DO [CLAUSES]
< Fortran DO loop to be executed in parallel >
[!$OMP END PARALLEL DO]

Clauses:

PRIVATE(list)
SHARED(list)
DEFAULT(PRIVATE | SHARED | NONE)
FIRSTPRIVATE(list)
LASTPRIVATE(list)
REDUCTION({operator | intrinsic} : list)
COPYIN (list)
IF (scalar_logical_expression)
SCHEDULE (type [, chunk])
ORDERED

The semantics of the PARALLEL DO directive are identical to those of a parallel region containing
only a single parallel DO loop and directive. Note that the END PARALLEL DO directive is optional.
The available clauses are as defined in Section 5.2 PARALLEL ... END PARALLEL and Section
5.6 DO ... END DO.

5.10 SECTIONS … END SECTIONS
The OpenMP SECTIONS / END SECTIONS directive pair uses the following syntax:

Syntax:

!$OMP SECTIONS [Clauses]
[!$OMP SECTION]
< Fortran code block executed by processor i >
[!$OMP SECTION]
< Fortran code block executed by processor j >

OpenMP Directives for Fortran 131

 …
!$OMP END SECTIONS [NOWAIT]

Clauses:

PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION({operator | intrinsic} : list)

The SECTIONS / END SECTIONS directives define a non-iterative work-sharing construct within a
parallel region. Each section is executed by a single processor. If there are more processors than
sections, some processors will have no work and will jump to the implied barrier at the end of the
construct. If there are more sections than processors, one or more processors will execute more
than one section.

A SECTION directive may only appear within the lexical extent of the enclosing SECTIONS / END
SECTIONS directives. In addition, the code within the SECTIONS / END SECTIONS directives must
be a structured block, and the code in each SECTION must be a structured block.

The available clauses are as defined in Section 5.2 PARALLEL ... END PARALLEL and Section
5.6 DO ... END DO.

5.11 PARALLEL SECTIONS
The OpenMP PARALLEL SECTIONS / END SECTIONS directive pair uses the following syntax:

Syntax:

!$OMP PARALLEL SECTIONS [CLAUSES]
[!$OMP SECTION]
< Fortran code block executed by processor i >
[!$OMP SECTION]
< Fortran code block executed by processor j >
 …
!$OMP END SECTIONS [NOWAIT]

Clauses:

PRIVATE(list)
SHARED(list)
DEFAULT(PRIVATE | SHARED | NONE)
FIRSTPRIVATE(list)
LASTPRIVATE(list)

132 Chapter 5

REDUCTION({operator | intrinsic} : list)
COPYIN (list)
IF (scalar_logical_expression)

The PARALLEL SECTIONS / END SECTIONS directives define a non-iterative work-sharing
construct without the need to define an enclosing parallel region. Each section is executed by a
single processor. If there are more processors than sections, some processors will have no work
and will jump to the implied barrier at the end of the construct. If there are more sections than
processors, one or more processors will execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing PARALLEL
SECTIONS / END SECTIONS directives. In addition, the code within the PARALLEL SECTIONS /
END SECTIONS directives must be a structured block, and the code in each SECTION must be a
structured block.

The available clauses are as defined in Section 5.2 PARALLEL ... END PARALLEL and Section
5.6 DO ... END DO.

5.12 ORDERED
The OpenMP ORDERED directive is supported using the following syntax:

!$OMP ORDERED
< Fortran code block executed by processor >
!$OMP END ORDERED

The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL DO directive
that includes the ORDERED clause. The code block between the ORDERED / END ORDERED
directives is executed by only one thread at a time, and in the order of the loop iterations. This
sequentializes the ordered code block while allowing parallel execution of statements outside the
code block. The following additional restrictions apply to the ORDERED directive:

• The ORDERED code block must be a structured block. It is illegal to branch into or out of the
block.

• A given iteration of a loop with a DO directive cannot execute the same ORDERED
directive more than once, and cannot execute more than one ORDERED directive.

5.13 ATOMIC
The OpenMP ATOMIC directive uses following syntax:

!$OMP ATOMIC

OpenMP Directives for Fortran 133

The ATOMIC directive is semantically equivalent to enclosing the following single statement in a
CRITICAL / END CRITICAL directive pair. The statement must be of one of the following forms:

• x = x operator expr

• x = expr operator x

• x = intrinsic (x, expr)

• x = intrinsic (expr, x)

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference x,
intrinsic is one of MAX, MIN, IAND, IOR, or IEOR, and operator is one of +, *, -, /, .AND., .OR.,
.EQV., or .NEQV..

5.14 FLUSH
The OpenMP FLUSH directive uses the following syntax:

!$OMP FLUSH [(list)]

The FLUSH directive ensures that all processor-visible data items, or only those specified in list
when it’s present, are written back to memory at the point at which the directive appears.

5.15 THREADPRIVATE
The OpenMP THREADPRIVATE directive uses the following syntax:

!$OMP THREADPRIVATE ([/common_block1/ [, /common_block2/] …])

Where common_blockn is the name of a common block to be made private to each thread but
global within the thread. This directive must appear in the declarations section of a program unit
after the declaration of any common blocks listed. On entry to a parallel region, data in a
THREADPRIVATE common block is undefined unless COPYIN is specified on the PARALLEL
directive. When a common block that is initialized using DATA statements appears in a
THREADPRIVATE directive, each thread’s copy is initialized once prior to its first use.

The following restrictions apply to the THREADPRIVATE directive:

• The THREADPRIVATE directive must appear after every declaration of a thread private
common block.

• Only named common blocks can be made thread private

• It is illegal for a THREADPRIVATE common block or its constituent variables to appear in any
clause other than a COPYIN clause.

134 Chapter 5

5.16 Run-time Library Routines
User-callable functions are available to the Fortran programmer to query and alter the parallel
execution environment.

integer omp_get_num_threads()

returns the number of threads in the team executing the parallel region from which it is called.
When called from a serial region, this function returns 1. A nested parallel region is the same as a
single parallel region. By default, the value returned by this function is equal to the value of the
environment variable OMP_NUM_THREADS or to the value set by the last previous call to the
omp_set_num_threads() subroutine defined below.

subroutine omp_set_num_threads(scalar_integer_exp)

sets the number of threads to use for the next parallel region. This subroutine can only be called
from a serial region of code. If it is called from within a parallel region, or within a subroutine or
function that is called from within a parallel region, the results are undefined. This subroutine has
precedence over the OMP_NUM_THREADS environment variable.

integer omp_get_thread_num()

returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested
parallel region is the same as a single parallel region.

integer function omp_get_max_threads()

returns the maximum value that can be returned by calls to omp_get_num_threads(). If
omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() will return the new value. This function returns the maximum value
whether executing from a parallel or serial region of code.

integer function omp_get_num_procs()

returns the number of processors that are available to the program.

logical function omp_in_parallel()

returns .TRUE. if called from within a parallel region and .FALSE. if called outside of a parallel
region. When called from within a parallel region that is serialized, for example in the presence of
an IF clause evaluating .FALSE., the function will return .FALSE..

subroutine omp_set_dynamic(scalar_logical_exp)

OpenMP Directives for Fortran 135

is designed to allow automatic dynamic adjustment of the number of threads used for execution of
parallel regions. This function is recognized, but currently has no effect.

logical function omp_get_dynamic()

is designed to allow the user to query whether automatic dynamic adjustment of the number of
threads used for execution of parallel regions is enabled. This function is recognized, but currently
always returns .FALSE..

subroutine omp_set_nested(scalar_logical_exp)

is designed to allow enabling/disabling of nested parallel regions. This function is recognized, but
currently has no effect.

logical function omp_get_nested()

is designed to allow the user to query whether dynamic adjustment of the number of threads
available for execution of parallel regions is enabled. This function is recognized, but currently
always returns .FALSE..

subroutine omp_init_lock(integer_var)

initializes a lock associated with the variable integer_var for use in subsequent calls to lock
routines. This initial state of integer_var is unlocked. It is illegal to make a call to this routine if
integer_var is already associated with a lock.

subroutine omp_destroy_lock(integer_var)

disassociates a lock associated with the variable integer_var.

subroutine omp_set_lock(integer_var)

causes the calling thread to wait until the specified lock is available. The thread gains ownership of
the lock when it is available. It is illegal to make a call to this routine if integer_var has not been
associated with a lock.

subroutine omp_unset_lock(integer_var)

causes the calling thread to release ownership of the lock associated with integer_var. It is illegal
to make a call to this routine if integer_var has not been associated with a lock.

logical function omp_test_lock(integer_var)

136 Chapter 5

causes the calling thread to try to gain ownership of the lock associated with integer_var. The
function returns .TRUE. if the thread gains ownership of the lock, and .FALSE. otherwise. It is
illegal to make a call to this routine if integer_var has not been associated with a lock.

5.17 Environment Variables
OMP_NUM_THREADS - specifies the number of threads to use during execution of parallel regions.
The default value for this variable is 1. For historical reasons, the environment variable NCPUS is
supported with the same functionality. In the event that both OMP_NUM_THREADS and NCPUS are
defined, the value of OMP_NUM_THREADS takes precedence.

Note: OMP_NUM_THREADS threads will be used to execute the program
regardless of the number of physical processors available in the system. As a
result, you can run programs using more threads than physical processors and
they will execute correctly. However, performance of programs executed in
this manner can be unpredictable, and oftentimes will be inefficient

OMP_SCHEDULE - specifies the type of iteration scheduling to use for DO and PARALLEL DO loops
which include the SCHEDULE(RUNTIME) clause. The default value for this variable is “STATIC”. If
the optional chunk size is not set, a chunk size of 1 is assumed except in the case of a STATIC
schedule. For a STATIC schedule, the default is as defined in Section 5.6 DO ... END DO.
Examples of the use of OMP_SCHEDULE are as follows:

$ setenv OMP_SCHEDULE “STATIC, 5”
$ setenv OMP_SCHEDULE “GUIDED, 8”
$ setenv OMP_SCHEDULE “DYNAMIC”

OMP_DYNAMIC - currently has no effect.

OMP_NESTED - currently has no effect.

MPSTKZ - increase the size of the stacks used by threads executing in parallel regions. It is for use
with programs that utilize large amounts of thread-local storage in the form of private variables or
local variables in functions or subroutines called within parallel regions. The value should be an
integer <n> concatenated with M or m to specify stack sizes of n megabytes. For example:

$ setenv MPSTKZ 8M

Optimization MP Pragmas for C and C++ 137

Chapter 6
OpenMP Pragmas for C and C++
The PGCC ANSI C and C++ compilers support the OpenMP C/C++ Application Program
Interface. The OpenMP shared-memory parallel programming model is defined by a collection of
compiler directives or pragmas, library routines, and environment variables that can be used to
specify shared-memory parallelism in Fortran, C and C++ programs. The OpenMP C/C++
pragmas include a parallel region construct for writing coarse grain SPMD programs, work-
sharing constructs which specify that C/C++ for loop iterations should be split among the
available threads of execution, and synchronization constructs. The data environment is controlled
using clauses on the pragmas or with additional pragmas. Run-time library functions are provided
to query the parallel runtime environment, for example to determine how many threads are
participating in execution of a parallel region. Finally, environment variables are provided to
control the execution behavior of parallel programs. For more information on OpenMP, and a
complete copy of the OpenMP C/C++ API specification, see http://www.openmp.org.

6.1 Parallelization Pragmas
Parallelization pragmas are #pragma statements in a C or C++ program that are interpreted by
the PGCC C and C++ compilers when the option −mp is specified on the command line. The
form of a parallelization pragma is:

#pragma omp pragmas_name [clauses]

The pragmas follow the conventions of the C and C++ standards. Whitespace can appear before
and after the #. Preprocessing tokens following the #pragma omp are subject to macro
replacement. The order in which clauses appear in the parallelization pragmas is not significant.
Spaces separate clauses within the pragmas. Clauses on pragmas may be repeated as needed
subject to the restrictions listed in the description of each clause.

For the purposes of the OpenMP pragmas, a C/C++ structured block is defined to be a statement
or compound statement (a sequence of statements beginning with { and ending with }) that has a
single entry and a single exit. No statement or compound statement is a C/C++ structured block if
there is a jump into or out of that statement.

The compiler option −mp enables recognition of the parallelization pragmas. The use of this
option also implies:

−Mreentrant local variables are placed on the stack and optimizations that may result in
non-reentrant code are disabled (e.g., −Mnoframe)

http://www.openmp.org/

138 Chapter 6

Also, note that calls to I/O library functions are system-dependent and are not necessarily
guaranteed to be thread-safe. I/O library calls within parallel regions should be protected by
critical regions (see below) to ensure they function correctly on all systems.

In the examples given with each section, the functions omp_get_num_threads() and
omp_get_thread_num() are used (refer to Section 6.15 Run-time Library Routines.) They
return the number of threads currently in the team executing the parallel region and the thread
number within the team, respectively.

6.2 omp parallel
The OpenMP omp parallel pragma uses the following syntax:

Syntax:

#pragma omp parallel [clauses]
< C/C++ structured block >

Clauses:

private(list)
shared(list)
default(shared | none)
firstprivate(list)
reduction(operator: list)
copyin (list)
if (scalar_expression)

This pragma declares a region of parallel execution. It directs the compiler to create an executable
in which the statements within the following C/C++ structured block are executed by multiple
lightweight threads. The code that lies within the structured block is called a parallel region.

The OpenMP parallelization pragmas support a fork/join execution model in which a single
thread executes all statements until a parallel region is encountered. At the entrance to the parallel
region, a system-dependent number of symmetric parallel threads begin executing all statements
in the parallel region redundantly. These threads share work by means of work-sharing constructs
such as parallel for loops (see the next example). The number of threads in the team is controlled
by the OMP_NUM_THREADS environment variable. If OMP_NUM_THREADS is not defined, the
program will execute parallel regions using only one processor. Branching into or out of a parallel
region is not supported.

All other shared-memory parallelization pragmas must occur within the scope of a parallel region.
Nested omp parallel pragmas are not supported and are ignored. There is an implicit barrier at

Optimization MP Pragmas for C and C++ 139

the end of a parallel region. When all threads have completed execution of the parallel region, a
single thread resumes execution of the statements that follow.

It should be emphasized that by default there is no work distribution in a parallel region. Each
active thread executes the entire region redundantly until it encounters a directive that specifies
work distribution. For work distribution, see the omp for pragma.

#include <stdio.h>
#include <omp.h>
main(){
 int a[2]={-1,-1};
#pragma omp parallel
 {
 a[omp_get_thread_num()] = omp_get_thread_num();
 }
 printf(“a[0] = %d, a[1] = %d”,a[0],a[1]);
}

The variables specified in a private list are private to each thread in a team. In effect, the
compiler creates a separate copy of each of these variables for each thread in the team. When an
assignment to a private variable occurs, each thread assigns to its local copy of the variable. When
operations involving a private variable occur, each thread performs the operations using its local
copy of the variable. Other important points to note about private variables are the following:

• Variables declared private in a parallel region are undefined upon entry to the parallel region.
If the first use of a private variable within the parallel region is in a right-hand-side
expression, the results of the expression will be undefined (i.e., this is probably a coding
error).

• Likewise, variables declared private in a parallel region are undefined when serial execution
resumes at the end of the parallel region.

The variables specified in a shared list are shared between all threads in a team, meaning that
all threads access the same storage area for shared data.

The default clause allows the user to specify the default attribute for variables in the lexical
extent of the parallel region. Individual clauses specifying private, shared, etc status override
the declared default. Specifying default(none) declares that there is no implicit default, and
in this case each variable in the parallel region must be explicitly listed with an attribute of
private, shared, firstprivate, or reduction.

Variables that appear in the list of a firstprivate clause are subject to the same semantics as
private variables, but in addition are initialized from the original object existing prior to
entering the parallel region. Variables that appear in the list of a reduction clause must be

140 Chapter 6

shared. A private copy of each variable in list is created for each thread as if the private
clause had been specified. Each private copy is initialized according to the operator as specified
in Table 6-1:

Table 6-1: Initialization of Reduction Variables

Operator Initialization

+ 0

* 1

− 0

& ~0

| 0

^ 0

&& 1

|| 0

• At the end of the parallel region, a reduction is performed on the instances of variables
appearing in list using operator as specified in the reduction clause. The initial
value of each reduction variable is included in the reduction operation. If the operator:
portion of the reduction clause is omitted, the default reduction operator is “+”
(addition).

• The copyin clause applies only to threadprivate variables. In the presence of the
copyin clause, data from the master thread’s copy of the threadprivate variable is
copied to the thread private copies upon entry to the parallel region.

• In the presence of an if clause, the parallel region will be executed in parallel only if the
corresponding scalar_expression evaluates to a non-zero value. Otherwise, the code
within the region will be executed by a single processor regardless of the value of the
environment variable OMP_NUM_THREADS.

6.3 omp critical
The OpenMP omp critical pragma uses the following syntax:

#pragma omp critical [(name)]
< C/C++ structured block >

Optimization MP Pragmas for C and C++ 141

Within a parallel region, there may exist subregions of code that will not execute properly when
executed by multiple threads simultaneously. This is often due to a shared variable that is written
and then read again.

The omp critical pragma defines a subsection of code within a parallel region, referred to as a
critical section, which will be executed one thread at a time. The first thread to arrive at a critical
section will be the first to execute the code within the section. The second thread to arrive will not
begin execution of statements in the critical section until the first thread has exited the critical
section. Likewise, each of the remaining threads will wait its turn to execute the statements in the
critical section.

An optional name may be used to identify the critical region. Names used to identify critical
regions have external linkage and are in a name space separate from the name spaces used by
labels, tags, members, and ordinary identifiers.

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out
of a critical section is illegal.

#include <stdlib.h>
main(){
int a[100][100], mx=-1, lmx=-1, i, j;
 for (j=0; j<100; j++)
 for (i=0; i<100; i++)
 a[i][j]=1+(int)(10.0*rand()/(RAND_MAX+1.0));
#pragma omp parallel private(i) firstprivate(lmx)
 {
#pragma omp for
 for (j=0; j<100; j++)
 for (i=0; i<100; i++)
 lmx = (lmx > a[i][j]) ? lmx : a[i][j];
#pragma omp critical
 mx = (mx > lmx) ? mx : lmx;
 }
 printf ("max value of a is %d\n",mx);
}

6.4 omp master
The OpenMP omp master pragma uses the following syntax:

#pragma omp master
< C/C++ structured block >

142 Chapter 6

In a parallel region of code, there may be a sub-region of code that should execute only on the
master thread. Instead of ending the parallel region before this subregion, and then starting it up
again after this subregion, the omp master pragma allows the user to conveniently designate
code that executes on the master thread and is skipped by the other threads. There is no implied
barrier on entry to or exit from a master section. Nested master sections are ignored. Branching
into or out of a master section is not supported.

#include <stdio.h>
#include <omp.h>
main(){
int a[2]={-1,-1};
#pragma omp parallel
 {
 a[omp_get_thread_num()] = omp_get_thread_num();
#pragma omp master
 printf(“YOU SHOULD ONLY SEE THIS ONCE\n”);
 }
 printf(“a[0]=%d, a[1]=%d\n”,a[0],a[1]);
}

6.5 omp single
The OpenMP omp single pragma uses the following syntax:

#pragma omp single [Clauses]
< C/C++ structured block >

Clauses:

private(list)
firstprivate(list)
nowait

In a parallel region of code, there may be a subregion of code that will only execute correctly on a
single thread. Instead of ending the parallel region before this subregion, and then starting it up
again after this subregion, the omp single pragma allows the user to conveniently designate
code that executes on a single thread and is skipped by the other threads. There is an implied
barrier on exit from a single process section unless the optional nowait clause is specified.

Nested single process sections are ignored. Branching into or out of a single process section is not
supported. The private and firstprivate clauses are as described in Section 6.2 omp
parallel.

Optimization MP Pragmas for C and C++ 143

6.6 omp for
The OpenMP omp for pragma uses the following syntax:

#pragma omp for [Clauses]
< C/C++ for loop to be executed in parallel >

Clauses:

private(list)
firstprivate(list)
lastprivate(list)
reduction(operator: list)
schedule (kind[, chunk])
ordered
nowait

The real purpose of supporting parallel execution is the distribution of work across the available
threads. You can explicitly manage work distribution with constructs such as:

if (omp_get_thread_num() == 0) {
 …
}
else if (omp_get_thread_num() == 1) {
 …
}

However, these constructs are not in the form of pragmas. The omp for pragma provides a
convenient mechanism for the distribution of loop iterations across the available threads in a
parallel region. The following variables can be used:

• Variables declared in a private list are treated as private to each processor participating
in parallel execution of the loop, meaning that a separate copy of the variable exists on
each processor.

• Variables declared in a firstprivate list are private, and in addition are initialized
from the original object existing before the construct.

• Variables declared in a lastprivate list are private, and in addition the thread that
executes the sequentially last iteration updates the version of the object that existed
before the construct.

144 Chapter 6

• The reduction clause is as described in Section 6.2 omp parallel. The schedule
clause is explained below.

• If ordered code blocks are contained in the dynamic extent of the for directive, the
ordered clause must be present. See Section 6.11 omp ordered for more information
on ordered code blocks.

The omp for pragma directs the compiler to distribute the iterative for loop immediately
following across the threads available to the program. The for loop is executed in parallel by the
team that was started by an enclosing parallel region. Branching into or out of an omp for loop is
not supported, and omp for pragmas may not be nested.

By default, there is an implicit barrier after the end of the parallel loop; the first thread to
complete its portion of the work will wait until the other threads have finished their portion of
work. If nowait is specified, the threads will not synchronize at the end of the parallel loop.
Other items to note about omp for loops:

• The for loop index variable is always private and must be a signed integer.

• omp for loops must be executed by all threads participating in the parallel region or none at
all.

• The for loop must be a structured block and its execution must not be terminated by
break.

• Values of the loop control expressions and the chunk expressions must be the same for
all threads executing the loop.

#include <stdio.h>
#include <math.h>
main(){
float a[1000], b[1000];
int i;
 for (i=0; i<1000; i++)
 b[i] = i;
#pragma omp parallel
 {
#pragma omp for
 for (i=0; i<1000; i++)
 a[i] = sqrt(b[i]);
 …
 }
 …
}

Optimization MP Pragmas for C and C++ 145

The schedule clause specifies how iterations of the for loop are divided up between processors.
Given a schedule (kind[, chunk]) clause, kind can be static, dynamic, guided, or
runtime. These are defined as follows:

• When schedule (static, chunk) is specified, iterations are allocated in contiguous
blocks of size chunk. The blocks of iterations are statically assigned to threads in a
round-robin fashion in order of the thread ID numbers. The chunk must be a scalar
integer expression. If chunk is not specified, a default chunk size is chosen equal to:

 (number_of_iterations + omp_num_threads() - 1) / omp_num_threads()

• When schedule (dynamic, chunk) is specified, iterations are allocated in
contiguous blocks of size chunk. As each thread finishes a piece of the iteration space, it
dynamically obtains the next set of iterations. The chunk must be a scalar integer
expression. If no chunk is specified, a default chunk size is chosen equal to 1.

• When schedule (guided, chunk) is specified, the chunk size is reduced in an
exponentially decreasing manner with each dispatched piece of the iteration space.
Chunk specifies the minimum number of iterations to dispatch each time, except when
there are less than chunk iterations remaining to be processed, at which point all
remaining iterations are assigned. If no chunk is specified, a default chunk size is chosen
equal to 1.

• When schedule (runtime) is specified, the decision regarding iteration scheduling is
deferred until runtime. The schedule type and chunk size can be chosen at runtime by
setting the OMP_SCHEDULE environment variable. If this environment variable is not set,
the resulting schedule is equivalent to schedule(static).

6.7 omp barrier
The OpenMP omp barrier pragma uses the following syntax:

#pragma omp barrier

There may be occasions in a parallel region when it is necessary that all threads complete work to
that point before any thread is allowed to continue. The omp barrier pragma synchronizes all
threads at such a point in a program. Multiple barrier points are allowed within a parallel region.
The omp barrier pragma must either be executed by all threads executing the parallel region or
by none of them.

146 Chapter 6

6.8 omp parallel for
The omp parallel for pragma uses the following syntax.

#pragma omp parallel for [clauses]
< C/C++ for loop to be executed in parallel >

Clauses:

private(list)
shared(list)
default(shared | none)
firstprivate(list)
lastprivate(list)
reduction(operator: list)
copyin (list)
if (scalar_expression)
ordered
schedule (kind[, chunk])

The semantics of the omp parallel for pragma are identical to those of a parallel region
containing only a single parallel for loop and pragma. The available clauses are as defined in
Sections 6.2 omp parallel and 6.6 omp for.

6.9 omp sections
The omp sections pragma uses the following syntax:

#pragma omp sections [Clauses]
{
 [#pragma omp section]
 < C/C++ structured block executed by processor i >
 [#pragma omp section]
 < C/C++ structured block executed by processor j >
 …
}

Clauses:

private (list)
firstprivate (list)
lastprivate (list)

Optimization MP Pragmas for C and C++ 147

reduction(operator: list)
nowait

The omp sections pragma defines a non-iterative work-sharing construct within a parallel
region. Each section is executed by a single thread. If there are more threads than sections, some
threads will have no work and will jump to the implied barrier at the end of the construct. If there
are more sections than threads, one or more threads will execute more than one section.

An omp section pragma may only appear within the lexical extent of the enclosing omp
sections pragma. In addition, the code within the omp sections pragma must be a structured
block, and the code in each omp section must be a structured block.

The available clauses are as defined in Sections 6.2 omp parallel and 6.6 omp for.

6.10 omp parallel sections
The omp parallel sections pragma uses the following syntax:

#pragma omp parallel sections [clauses]
{
 [#pragma omp section]
 < C/C++ structured block executed by processor i >
 [#pragma omp section]
 < C/C++ structured block executed by processor j >
 …
}

Clauses:

private(list)
shared(list)
default(shared | none)
firstprivate(list)
lastprivate (list)
reduction({operator: list)
copyin (list)
if (scalar_expression)
nowait

The omp parallel sections pragma defines a non-iterative work-sharing construct without
the need to define an enclosing parallel region. Semantics are identical to a parallel region
containing only an omp sections pragma and the associated structured block.

148 Chapter 6

6.11 omp ordered
The OpenMP ordered pragma uses the following syntax:

#pragma omp ordered
< C/C++ structured block >

The ordered pragma can appear only in the dynamic extent of a for or parallel for pragma
that includes the ordered clause. The structured code block appearing after the ordered pragma
is executed by only one thread at a time, and in the order of the loop iterations. This sequentializes
the ordered code block while allowing parallel execution of statements outside the code block.
The following additional restrictions apply to the ordered pragma:

• The ordered code block must be a structured block. It is illegal to branch into or out of the
block.

• A given iteration of a loop with a DO directive cannot execute the same ORDERED
directive more than once, and cannot execute more than one ORDERED directive.

6.12 omp atomic
The omp atomic pragma uses the following syntax:

#pragma omp atomic
< C/C++ expression statement >

The omp atomic pragma is semantically equivalent to subjecting the following single C/C++
expression statement to an omp critical pragma. The expression statement must be of one of
the following forms:

• x <binary_operator>= expr

• x++

• ++x

• x--

• --x

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference x,
<binary_operator> is not overloaded and is one of +, *, -, /, &, ^, |, << or >>.

Optimization MP Pragmas for C and C++ 149

6.13 omp flush
The omp flush pragma uses the following syntax:

#pragma omp flush [(list)]

The omp flush pragma ensures that all processor-visible data items, or only those specified in
list when it’s present, are written back to memory at the point at which the directive appears.

6.14 omp threadprivate
The omp threadprivate pragma uses the following syntax:

#pragma omp threadprivate (list)

Where list is a list of variables to be made private to each thread but global within the thread.
This pragma must appear in the declarations section of a program unit after the declaration of any
variables listed. On entry to a parallel region, data in a threadprivate variable is undefined
unless copyin is specified on the omp parallel pragma. When a variable appears in an omp
threadprivate pragma, each thread’s copy is initialized once at an unspecified point prior to its
first use as the master copy would be initialized in a serial execution of the program.

The following restrictions apply to the omp threadprivate pragma:

• The omp threadprivate pragma must appear after the declaration of every threadprivate
variable included in list.

• It is illegal for an omp threadprivate variable to appear in any clause other than a
copyin, schedule or if clause.

• If a variable is specified in an omp threadprivate pragma in one translation unit, it must
be specified in an omp threadprivate pragma in every translation unit in which it
appears.

• The address of an omp threadprivate variable is not an address constant.

• An omp threadprivate variable must not have an incomplete type or a reference type.

6.15 Run-time Library Routines
User-callable functions are available to the OpenMP C/C++ programmer to query and alter the
parallel execution environment. Any program unit that invokes these functions should include the
statement #include <omp.h>. The omp.h include file contains definitions for each of the
C/C++ library routines and two required type definitions.

150 Chapter 6

#include <omp.h>
int omp_get_num_threads(void);

returns the number of threads in the team executing the parallel region from which it is called.
When called from a serial region, this function returns 1. A nested parallel region is the same as a
single parallel region. By default, the value returned by this function is equal to the value of the
environment variable OMP_NUM_THREADS or to the value set by the last previous call to the
omp_set_num_threads() function defined below.

#include <omp.h>
void omp_set_num_threads(int num_threads);

sets the number of threads to use for the next parallel region. This function can only be called
from a serial region of code. If it is called from within a parallel region, or within a function that
is called from within a parallel region, the results are undefined. This function has precedence
over the OMP_NUM_THREADS environment variable.

#include <omp.h>
int omp_get_thread_num(void);

returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A
nested parallel region is the same as a single parallel region.

#include <omp.h>
int omp_get_max_threads(void);

returns the maximum value that can be returned by calls to omp_get_num_threads(). If
omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() will return the new value. This function returns the maximum value
whether executing from a parallel or serial region of code.

#include <omp.h>
int omp_get_num_procs(void);

returns the number of processors that are available to the program.

#include <omp.h>
int omp_in_parallel(void);

returns non-zero if called from within a parallel region and zero if called outside of a parallel
region. When called from within a parallel region that is serialized, for example in the presence of
an if clause evaluating to zero, the function will return zero.

Optimization MP Pragmas for C and C++ 151

#include <omp.h>
void omp_set_dynamic(int dynamic_threads);

is designed to allow automatic dynamic adjustment of the number of threads used for execution of
parallel regions. This function is recognized, but currently has no effect.

#include <omp.h>
int omp_get_dynamic(void);

is designed to allow the user to query whether automatic dynamic adjustment of the number of
threads used for execution of parallel regions is enabled. This function is recognized, but currently
always returns zero.

#include <omp.h>
void omp_set_nested(int nested);

is designed to allow enabling/disabling of nested parallel regions. This function is recognized, but
currently has no effect.

#include <omp.h>
int omp_get_nested(void);

is designed to allow the user to query whether dynamic adjustment of the number of threads
available for execution of parallel regions is enabled. This function is recognized, but currently
always returns zero.

#include <omp.h>
void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

initializes a lock associated with the variable lock for use in subsequent calls to lock routines. This
initial state of lock is unlocked. It is illegal to make a call to this routine if lock is already
associated with a lock.

#include <omp.h>
void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);

disassociates a lock associated with the variable lock.

#include <omp.h>
void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

152 Chapter 6

causes the calling thread to wait until the specified lock is available. The thread gains ownership
of the lock when it is available. It is illegal to make a call to this routine if lock has not been
associated with a lock.

#include <omp.h>
void omp_unset_lock(omp_lock_t *lock);
void omp_unset_nest_lock(omp_nest_lock_t *lock);

causes the calling thread to release ownership of the lock associated with lock. It is illegal to make
a call to this routine if lock has not been associated with a lock.

#include <omp.h>
int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

causes the calling thread to try to gain ownership of the lock associated with lock. The function
returns non-zero if the thread gains ownership of the lock, and zero otherwise. It is illegal to
make a call to this routine if lock has not been associated with a lock.

6.16 Environment Variables
OMP_NUM_THREADS - specifies the number of threads to use during execution of parallel regions.
The default value for this variable is 1. For historical reasons, the environment variable NCPUS is
supported with the same functionality. In the event that both OMP_NUM_THREADS and NCPUS are
defined, the value of OMP_NUM_THREADS takes precedence.

Note: OMP_NUM_THREADS threads will be used to execute the program
regardless of the number of physical processors available in the system. As a
result, you can run programs using more threads than physical processors
and they will execute correctly. However, performance of programs executed
in this manner can be unpredictable, and oftentimes will be inefficient

OMP_SCHEDULE - specifies the type of iteration scheduling to use for omp for and omp
parallel for loops that include the schedule(runtime) clause. The default value for this
variable is “static”. If the optional chunk size is not set, a chunk size of 1 is assumed except in
the case of a static schedule. For a static schedule, the default is as defined in Section 6.6
omp for.

Optimization MP Pragmas for C and C++ 153

Examples of the use of OMP_SCHEDULE are as follows:

$ setenv OMP_SCHEDULE “static, 5”
$ setenv OMP_SCHEDULE “guided, 8”
$ setenv OMP_SCHEDULE “dynamic”

OMP_DYNAMIC - currently has no effect.

OMP_NESTED - currently has no effect.

MPSTKZ - increase the size of the stacks used by threads executing in parallel regions. For use with
programs that utilize large amounts of thread-local storage in the form of private variables or local
variables in functions or subroutines called within parallel regions. The value should be an integer
<n> concatenated with M or m to specify stack sizes of n megabytes. For example:

$ setenv MPSTKZ 8M

Optimization Directives and Pragmas 155

Chapter 7
Optimization Directives and Pragmas
Directives are Fortran comments that the user may supply in a Fortran source file to provide
information to the compiler. Directives alter the effects of certain command line options or default
behavior of the compiler. While a command line option affects the entire source file that is being
compiled, directives apply, or disable, the effects of a command line option to selected
subprograms or to selected loops in the source file (for example, an optimization). Use directives
to tune selected routines or loops.

7.1 Adding Directives to Fortran
Directives may have any of the following forms:

cpgi$g directive

cpgi$r directive

cpgi$l directive

cpgi$ directive

The C must be in column 1. Either * or ! is allowed in place of C. The scope indicator occurs after
the $; this indicator controls the scope of the directive. Some directives ignore the scope indicator.
The valid scopes, as shown above, are:

g (global) indicates the directive applies to the end of the source file.

r (routine) indicates the directive applies to the next subprogram.

l (loop) indicates the directive applies to the next loop (but not to any loop contained
within the loop body). Loop-scoped directives are only applied to DO loops.

blank indicates that the default scope for the directive is applied.

The body of the directive may immediately follow the scope indicator. Alternatively, any number
of blanks may precede the name of the directive. Any names in the body of the directive, including
the directive name, may not contain embedded blanks. Blanks may surround any special
characters, such as a comma or an equal sign.

156 Chapter 7

The directive name, including the directive prefix, may contain upper or lower case letters (case is
not significant). Case is significant for any variable names that appear in the body of the directive
if the command line option –Mupcase is selected. For compatibility with other vendors’ directives,
the prefix cpgi$ may be substituted with cdir$ or cvd$.

7.2 Fortran Directive Summary
Table 7-1 summarizes the supported Fortran directives. The scope entry indicates the allowed
scope indicators for each directive; the default scope is surrounded by parentheses. The system
field indicates the target system type for which the pragma applies. Many of the directives can be
preceded by NO. The default entry in the table indicates the default of the directive; n/a appears if a
default does not apply. The name of a directive may also be prefixed with –M; for example, the
directive –Mbounds is equivalent to bounds and –Mopt is equivalent to opt.

Table 7-1: Fortran Directive Summary

Directive Function Default Scope
altcode
noaltcode

Do/don’t generate scalar code for vector
regions

altcode (l)rg

assoc
noassoc

Do/don’t perform associative
transformations

assoc (l)rg

bounds
nobounds

Do/don’t perform array bounds checking nobounds (r)g*

cncall
nocncall

Loops are considered for parallelization,
even if they contain calls to user-defined
subroutines or functions, or if their loop
counts do not exceed usual thresholds.

nocncall (l)rg

concur
noconcur

Do/don’t enable auto-concurrentization of
loops

concur (l)rg

depchk
nodepchk

Do/don’t ignore potential data
dependencies

depchk (l)rg

eqvchk
noeqvchk

Do/don’t check EQUIVALENCE s for
data dependencies.

eqvchk (l)rg

invarif
noinvarif

Do/don’t remove invariant if constructs
from loops.

invarif (l)rg

ivdep Ignore potential data dependencies depchk (l)rg
lstval
nolstval

Do/don’t compute last values. lstval (l)rg

opt Select optimization level. N/A (r)g

Optimization Directives and Pragmas 157

Directive Function Default Scope
safe_lastval

Parallelize when loop contains a scalar
used outside of loop.

not enabled (l)

unroll
nounroll

Do/don’t unroll loops. nounroll (l)rg

vector
novector

Do/don't perform vectorizations. vector (l)rg

vintr
novintr

Do/don’t recognize vector intrinsics. vintr (l)rg

In the case of the vector/novector directive, the scope is the code following the directive until
the end of the routine for r-scoped directives (as opposed to the entire routine), or until the end of
the file for g-scoped directives (as opposed to the entire file).

altcode (noaltcode)

Instructs the parallelizer to generate alternate scalar code for parallelized loops. If altcode is
specified, the parallelizer determines an appropriate cutoff length and generates scalar code to be
executed whenever the loop count is less than or equal to that length. The noaltcode directive
disables these transformations.

This directive affects the compiler only when –Mconcur is enabled on the command line.

altcode(n)concur
This directive sets the loop count threshold for parallelization of non-
reduction loops to n. Without this directive, the compiler assumes a default
of 100. Under this directive, innermost loops without reductions are
executed in parallel only if their iteration counts exceed n.

altcode(n)concurreduction
This directive sets the loop count threshold for parallelization of reduction
loops to n. Without this directive, the compiler assumes a default of 200.
Under this directive, innermost loops with reductions are executed in
parallel only if their iteration counts exceed n.

noaltcode
This directive sets the loop count thresholds for parallelization of all
innermost loops to 0.

assoc (noassoc)

This directive toggles the effects of the –Mvect=noassoc command-line option (an Optimization
–M control).

158 Chapter 7

By default, when scalar reductions are present the vectorizer may change the order of operations
so that it can generate better code (e.g., dot product). Such transformations change the result of the
computation due to roundoff error. The noassoc directive disables these transformations. This
directive affects the compiler only when –Mvect is enabled on the command line.

bounds (nobounds)

This directive alters the effects of the –Mbounds command line option. This directive enables the
checking of array bounds when subscripted array references are performed. By default, array
bounds checking is not performed.

cncall (nocncall)

Loops within the specified scope are considered for parallelization, even if they contain calls to
user-defined subroutines or functions, or if their loop counts do not exceed the usual thresholds. A
nocncall directive cancels the effect of a previous cncall.

concur (noconcur)

This directive alters the effects of the –Mconcur command-line option. The directive instructs the
auto-parallelizer to enable auto-concurrentization of loops. If concur is specified, multiple
processors will be used to execute loops which the auto-parallelizer determines to be
parallelizable. The noconcur directive disables these transformations. This directive affects the
compiler only when –Mconcur is enabled on the command line.

depchk (nodepchk)

This directive alters the effects of the –Mdepchk command line option. When potential data
dependencies exist, the compiler, by default, assumes that there is a data dependence that in turn
may inhibit certain optimizations or vectorizations. nodepchk directs the compiler to ignore
unknown data dependencies.

eqvchk (noeqvchk)

When examining data dependencies, noeqvchk directs the compiler to ignore any dependencies
between variables appearing in EQUIVALENCE statements.

invarif (noinvarif)

There is no command-line option corresponding to this directive. Normally, the compiler removes
certain invariant if constructs from within a loop and places them outside of the loop. The directive
noinvarif directs the compiler to not move such constructs. The directive invarif toggles a
previous noinvarif.

ivdep

The ivdep directive is equivalent to the directive nodepchk.

Optimization Directives and Pragmas 159

opt

The syntax of this directive is:

cpgi$<scope> opt=<level>

where, the optional <scope> is r or g and <level> is an integer constant representing the
optimization level to be used when compiling a subprogram (routine scope) or all subprograms in
a file (global scope). The opt directive overrides the value specified by the command line option
–On.

lstval (nolstval)

There is no command line option corresponding to this directive. The compiler determines whether
the last values for loop iteration control variables and promoted scalars need to be computed. In
certain cases, the compiler must assume that the last values of these variables are needed and
therefore computes their last values. The directive nolstval directs the compiler not to compute
the last values for those cases.

safe_lastval

During parallelization scalars within loops need to be privatized. Problems are possible if a scalar
is accessed outside the loop. For example:

 do i = 1, N
 if(f(x(i)) > 5.0)
 t = x(i)
 enddo
 v = t

creates a problem since the value of t may not be computed on the last iteration of the loop. If a
scalar assigned within a loop is used outside the loop, we normally save the last value of the scalar.
Essentially the value of the scalar on the "last iteration" is saved, in this case when i = N.

If the loop is parallelized and the scalar is not assigned on every iteration, it may be difficult to
determine on what iteration t is last assigned, without resorting to costly critical sections.
Analysis allows the compiler to determine if a scalar is assigned on every iteration, thus the loop is
safe to parallelize if the scalar is used later. An example loop is:

do i = 1, N
 if(x(i) > 0.0)
 t = 2.0
 else
 t = 3.0
 endif

160 Chapter 7

 y(i) = ...t...
enddo
v = t

where t is assigned on every iteration of the loop. However, there are cases where a scalar may be
privatizable. If it is used after the loop, it is unsafe to parallelize. Examine this loop:

do i = 1,N
 if(x(i) > 0.0)
 t = x(i)
 ...
 ...
 y(i) = ...t..
 endif
enddo
v = t

where each use of t within the loop is reached by a definition from the same iteration. Here t is
privatizable, but the use of t outside the loop may yield incorrect results since the compiler may
not be able to detect on which iteration of the parallelized loop t is assigned last.

The compiler detects the above cases. Where a scalar is used after the loop, but is not defined on
every iteration of the loop, parallelization will not occur.

If you know that the scalar is assigned on the last iteration of the loop, making it safe to parallelize
the loop, a pragma is available to let the compiler know the loop is safe to parallelize. Use the
following C pragma to tell the compiler that for a given loop the last value computed for all scalars
make it safe to parallelize the loop:

cpgi$l safe_lastval

In addition, a command-line option, −Msafe_lastval, provides this information for all loops within
the routines being compiled (essentially providing global scope.)

unroll (nounroll)

The directive nounroll is used to disable loop unrolling and unroll to enable unrolling. The
directive takes arguments c and n. A c specifies that c (complete unrolling should be turned on or
off) An n specifies that n (count) unrolling should be turned on or off. In addition, the following
arguments may be added to the unroll directive:

 unroll = c:v

Optimization Directives and Pragmas 161

This sets the threshold to which c unrolling applies; v is a constant; a loop whose constant loop
count is <= v is completely unrolled.

 unroll = n:v

This adjusts threshold to which n unrolling applies; v is a constant; a loop to which n unrolling
applies is unrolled v times.

The directives unroll and nounroll only apply if –Munroll is selected on the command line.

vector (novector)

The directive novector is used to disable vectorization. vector and novector only apply if
–Mvect has been selected on the command line.

vintr (novintr)

The directive novintr directs the vectorizer to disable recognition of vector intrinsics. The
–Mvect=transform option always disables vector intrinsic recognition. The directive norecog
takes precedence over vintr. The directive vintr affects the compiler only when –Mvect is
specified.

7.3 Scope of Directives and Command Line options
This section presents several examples showing the effect of directives and the scope of directives.
Remember that during compilation, the effect of a directive may be to either turn an option on, or
turn an option off. Directives apply to the section of code following the directive, corresponding to
the specified scope (that is, the following loop, the following routine, or the rest of the program).

Consider the following code:

 integer maxtime, time
 parameter (n = 1000, maxtime = 10)
 double precision a(n,n), b(n,n), c(n,n)
 do time = 1, maxtime
 do i = 1, n
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
 enddo
 end

When compiled with –Mvect, both interior loops are interchanged with the outer loop.

162 Chapter 7

$ pgf95 -Mvect dirvect1.f

Directives alter this behavior either globally or on a routine or loop by loop basis. To assure that
vectorization is not applied, use the novector directive with global scope.

cpgi$g novector
 integer maxtime, time
 parameter (n = 1000, maxtime = 10)
 double precision a(n,n), b(n,n), c(n,n)
 do time = 1, maxtime
 do i = 1, n
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
 enddo
 end

In this version, the compiler disables vectorization for the entire source file. Another use of the
directive scoping mechanism turns an option on or off locally, either for a specific procedure or for
a specific loop:

 integer maxtime, time
 parameter (n = 1000, maxtime = 10)
 double precision a(n,n), b(n,n), c(n,n)
cpgi$l novector
 do time = 1, maxtime
 do i = 1, n
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
 enddo
 end

Loop level scoping does not apply to nested loops. That is, the directive only applies to the
following loop. In this example, the directive turns off vector transformations for the top-level
loop. If the outer loop were a timing loop, this would be a practical use for a loop-scoped directive.

Optimization Directives and Pragmas 163

7.4 Adding Pragmas to C and C++
Pragmas may be supplied in a C/C++ source file to provide information to the compiler. Like
directives in Fortran, pragmas alter the effects of certain command-line options or default behavior
of the compiler (many pragmas have a corresponding command-line option). While a command-
line option affects the entire source file that is being compiled, pragmas apply the effects of a
particular command-line option to selected functions or to selected loops in the source file.
Pragmas may also toggle an option, selectively enabling and disabling the option. Pragmas let you
tune selected functions or loops based on your knowledge of the code.

The general syntax of a pragma is:

#pragma [scope] pragma-body

The optional scope field is an indicator for the scope of the pragma; some pragmas ignore the
scope indicator.

The valid scopes are:

global indicates the pragma applies to the entire source file.

routine indicates the pragma applies to the next function.

loop indicates the pragma applies to the next loop (but not to any loop contained
within the loop body). Loop-scoped pragmas are only applied to for and
while loops.

If a scope indicator is not present, the default scope, if any, is applied. Whitespace must appear
after the pragma keyword and between the scope indicator and the body of the pragma.
Whitespace may also surround any special characters, such as a comma or an equal sign. Case is
significant for the names of the pragmas and any variable names that appear in the body of the
pragma.

7.5 C/C++ Pragma Summary
Table 7-2 summarizes the supported pragmas. The scope entry in the table indicates the permitted
scope indicators for each pragma: the letters L, R, and G indicate loop, routine, and global
scope, respectively. The default scope is surrounded by parentheses. The "*" in the scope field
indicates that the scope is the code following the pragma until the end of the routine for R-scoped
pragmas, as opposed to the entire routine, or until the end of the file for G-scoped pragmas, as
opposed to the entire file.

164 Chapter 7

Many of the pragmas can be preceded by no. The default entry in the table indicates the default of
the pragma; N/A appears if a default does not apply. The name of any pragma may be prefixed
with -M; for example, –Mnoassoc is equivalent to noassoc and –Mvintr is equivalent to vintr.
The section following the table provides brief descriptions of the pragmas that are unique to
C/C++. Pragmas that have a corresponding directive in Fortran are described in Section 7.2.

Table 7-2: C/C++ Pragma Summary

Pragma Function Default Scope
altcode
noaltcode

Do/don’t generate scalar code for vector
regions.

altcode (L)RG

assoc
noassoc

Do/don’t perform associative
transformations.

assoc (L)RG

bounds
nobounds

Do/don’t perform array bounds checking. nobounds (R)G

concur
noconcur

Do/don’t enable auto-concurrentization of
loops.

concur (L)RG

depchk
nodepchk

Do/don’t ignore potential data
dependencies.

depchk (L)RG

fcon
nofcon

Do/don’t assume unsuffixed real constants
are single precision.

nofcon (R)G

invarif
noinvarif

Do/don’t remove invariant if constructs
from loops.

invarif (L)RG

lstval
nolstval

Do/don’t compute last values. lstval (L)RG

opt Select optimization level. N/A (R)G

safe
nosafe

Do/don’t treat pointer arguments as safe. safe (R)G

safe_lastval

Parallelize when loop contains a scalar used
outside of loop.

not enabled (L)

Optimization Directives and Pragmas 165

Pragma Function Default Scope
safeptr
nosafeptr

Do/don’t ignore potential data dependencies
to pointers.

nosafeptr L(R)G

single
nosingle

Do/don’t convert float parameters to
double.

nosingle (R)G*

unroll
nounroll

Do/don’t unroll loops. nounroll (L)RG

vector
novector

Do/don’t perform vectorizations. vector (L)RG

vintr
novintr

Do/don’t recognize vector intrinsics. vintr (L)RG

fcon (nofcon)

This pragma alters the effects of the –Mfcon command-line option (a –M Language control).

The pragma instructs the compiler to treat non-suffixed floating-point constants as float rather
than double. By default, all non-suffixed floating-point constants are treated as double.

safe (nosafe)

By default, the compiler assumes that all pointer arguments are unsafe. That is, the storage located
by the pointer can be accessed by other pointers.

The forms of the safe pragma are:

#pragma [scope] [no]safe
#pragma safe (variable [, variable]...)

where scope is either global or routine.

When the pragma safe is not followed by a variable name (or name list), all pointer arguments
appearing in a routine (if scope is routine) or all routines (if scope is global) will be treated as
safe.

If variable names occur after safe, each name is the name of a pointer argument in the current
function. The named argument is considered to be safe. Note that if just one variable name is
specified, the surrounding parentheses may be omitted.

There is no command-line option corresponding to this pragma.

166 Chapter 7

safeptr (nosafeptr)

The pragma safeptr directs the compiler to treat pointer variables of the indicated storage class as
safe. The pragma nosafeptr directs the compiler to treat pointer variables of the indicated storage
class as unsafe. This pragma alters the effects of the –Msafeptr command-line option.

The syntax of this pragma is:

#pragma [scope] value

where value is:

[no]safeptr={arg|local|auto|global|static|all},...

Note that the values local and auto are equivalent.

For example, in a file containing multiple functions, the command-line option –Msafeptr might be
helpful for one function, but can’t be used because another function in the file would produce
incorrect results. In such a file, the safeptr pragma, used with routine scope could improve
performance and produce correct results.

single (nosingle)

The pragma single directs the compiler not to convert float parameters to double in non-
prototyped functions. This can result in faster code if the program uses only float parameters.

Note: Since ANSI C specifies that routines must convert float parameters
to double in non-prototyped functions, this pragma results in non-ANSI
conforming code.

7.6 Scope of C/C++ Pragmas and Command Line Options
This section presents several examples showing the effect of pragmas and the use of the pragma
scope indicators. Note during compilation a pragma either turns an option on or turns an option
off. Pragmas apply to the section of code corresponding to the specified scope (that is, the entire
file, the following loop, or the following or current routine). For pragmas that have only routine
and global scope, there are two rules for determining the scope of a pragma. We cover these
special scope rules at the end of this section. In all cases, pragmas override a corresponding
command-line option.

Consider the program:

main()
{
 float a[100][100], b[100][100], c[100][100];

Optimization Directives and Pragmas 167

 int time, maxtime, n, i, j;
 maxtime=10;
 n=100;
 for (time=0; time<maxtime;time++)
 for (j=0; j<n;j++)
 for (i=0; i<n;i++)
 c[i][j] = a[i][j] + b[i][j];
}

When this is compiled using the –Mvect command-line option, both interior loops are interchanged
with the outer loop. Pragmas alter this behavior either globally or on a routine or loop by loop
basis. To ensure that vectorization is not applied, use the novector pragma with global scope.

main()
{
#pragma global novector
 float a[100][100], b[100][100], c[100][100];
 int time, maxtime, n, i, j;
 maxtime=10;
 n=100;
 for (time=0; time<maxtime;time++)
 for (j=0; j<n;j++)
 for (i=0; i<n;i++)
 c[i][j] = a[i][j] + b[i][j];
}

In this version, the compiler does not perform vectorization for the entire source file. Another use
of the pragma scoping mechanism turns an option on or off locally either for a specific procedure
or for a specific loop. The following example shows the use of a loop-scoped pragma.

168 Chapter 7

main()
{
 float a[100][100], b[100][100], c[100][100];
 int time, maxtime, n, i, j;
 maxtime=10;
 n=100;
#pragma loop novector
 for (time=0; time<maxtime;time++)
 for (j=0; j<n;j++)
 for (i=0; i<n;i++)
 c[i][j] = a[i][j] + b[i][j];
}

Loop level scoping does not apply to nested loops. That is, the pragma only applies to the
following loop. In this example, the pragma turns off vector transformations for the top-level loop.
If the outer loop were a timing loop, this would be a practical use for a loop-scoped pragma.

The following example shows routine pragma scope:

#include "math.h"

func1()
#pragma routine novector
{
 float a[100][100], b[100][100];
 float c[100][100], d[100][100];
 int i,j;
 for (i=0;i<100;i++)
 for (j=0;j<100;j++)
 a[i][j] = a[i][j] + b[i][j] * c[i][j];
 c[i][j] = c[i][j] + b[i][j] * d[i][j];
}

func2()
{
 float a[200][200], b[200][200];
 float c[200][200], d[200][200];
 int i,j;
 for (i=0;i<200;i++)
 for (j=0;j<200;j++)
 a[i][j] = a[i][j] + b[i][j] * c[i][j];
 c[i][j] = c[i][j] + b[i][j] * d[i][j];

Optimization Directives and Pragmas 169

}

When this source is compiled using the –Mvect command-line option, func2 is vectorized but
func1 is not vectorized. In the following example, the global novintr pragma turns off
vectorization for the entire file.

#include "math.h"
func1()
#pragma global novector
{
 float a[100][100], b[100][100];
 float c[100][100], d[100][100];
 int i,j;
 for (i=0;i<100;i++)
 for (j=0;j<100;j++)
 a[i][j] = a[i][j] + b[i][j] * c[i][j];
 c[i][j] = c[i][j] + b[i][j] * d[i][j];
}

func2()
{
 float a[200][200], b[200][200];
 float c[200][200], d[200][200];
 int i,j;
 for (i=0;i<200;i++)
 for (j=0;j<200;j++)
 a[i][j] = a[i][j] + b[i][j] * c[i][j];
 c[i][j] = c[i][j] + b[i][j] * d[i][j];
}

Special Scope Rules
Special rules apply for a pragma with loop, routine, and global scope. When the pragma is placed
within a routine, it applies to the routine from its point in the routine to the end of the routine. The
same rule applies for one of these pragmas with global scope.

However, there are several pragmas for which only routine and global scope applies and which
affect code immediately following the pragma:

• bounds and fcon – The bounds and fcon pragmas behave in a similar manner to
pragmas with loop scope. That is, they apply to the code following the pragma.

170 Chapter 7

• opt and safe – When the opt, and safe pragmas are placed within a routine, they apply
to the entire routine as if they had been placed at the beginning of the routine.

7.7 Prefetch Directives
When vectorization is enabled using the –Mvect command-line option or an aggregate option such
as –fastsse that incorporates –Mvect, the PGI compilers selectively emit instructions to explicitly
prefetch data into the data cache prior to first use. It is possible to control how these prefetch
instructions are emitted using prefetch directives. These directives only have an effect when
vectorization is enabled. See Table P-2 in the Preface for a list of processors that support prefetch
instructions.

The syntax of a prefetch directive is as follows:

cmem$ prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable or array element reference.

NOTE: the sentinel for prefetch directives is cmem$, which is distinct from
the cpgi$ sentinel used for optimization directives. Any prefetch
directives that use the cpgi$ sentinel will be ignored by the PGI
compilers.

The "c" must be in column 1. Either * or ! is allowed in place of c. Any scope indicator that
occurs after the $ (g, r or l) is ignored. The directive name, including the directive prefix, may
contain upper or lower case letters (case is not significant). Case is significant for any variable
names that appear in the body of the directive if the command line option –Mupcase is selected.

An example using prefetch directives to prefetch data in a matrix multiplication inner loop where a
row of one source matrix has been gathered into a contiguous vector might look as follows:

 real*8 a(m,n), b(n,p), c(m,p), arow(n)
...
 do j = 1, p
cmem$ prefetch arow(1),b(1,j)
cmem$ prefetch arow(5),b(5,j)
cmem$ prefetch arow(9),b(9,j)
 do k = 1, n, 4
cmem$ prefetch arow(k+12),b(k+12,j)
 c(i,j) = c(i,j) + arow(k) * b(k,j)
 c(i,j) = c(i,j) + arow(k+1) * b(k+1,j)
 c(i,j) = c(i,j) + arow(k+2) * b(k+2,j)

Optimization Directives and Pragmas 171

 c(i,j) = c(i,j) + arow(k+3) * b(k+3,j)
 enddo
 enddo

This pattern of prefetch directives will cause the compiler to emit prefetch instructions whereby
elements of arow and b are fetched into the data cache starting 4 iterations prior to first use. By
varying the prefetch distance in this way, it is possible in some cases to reduce the effects of main
memory latency and improve performance.

Libraries 173

Chapter 8
Libraries and Environment Variables
This chapter discusses issues related to PGI-supplied compiler libraries. It also addresses the use
of C/C++ builtin functions in place of the corresponding libc routines, creation of dynamically
linked libraries (also known as shared objects or shared libraries), and math libraries.

8.1 Using builtin Math Functions in C/C++
The name of the math header file is math.h. Include the math header file in all of your source files
that use a math library routine as in the following example, which calculates the inverse cosine of
π/3.

#include <math.h>
#define PI 3.1415926535
main()
{
 double x, y;
 x = PI/3.0;
 y = acos(x);
}

Including math.h will cause PGCC C and C++ to use builtin functions, which are much more
efficient than library calls. In particular, the following intrinsics calls will be processed using
builtins if you include math.h:

atan2 cos fabs exp

atan sin log pow

tan sqrt log10

8.2 Creating and Using Shared Object Files
All of the PGI Fortran, C, and C++ compilers support creation of shared object files. Unlike
statically linked object and library files, shared object files link and resolve references with an
executable at runtime via a dynamic linker supplied with your operating system. The PGI
compilers must generate position independent code to support creation of shared objects by the
linker. This is not the default, use the steps that follow to create object files with position

174 Chapter 8

independent code and shared object files that are to include them. The following steps describe
how to create and use a shared object file.

Step 1 - To create an object file with position independent code, compile it with the appropriate
PGI compiler using the −fpic option (the −fPIC, −Kpic, and −KPIC options are supported for
compatibility with other systems you may have used, and are equivalent to−fpic). For example, use
the following command to create an object file with position independent code using pgf95:

% pgf95 -c -fpic tobeshared.f

Step 2 - To produce a shared object file, use the appropriate PGI compiler to invoke the linker
supplied with your system. It is customary to name such files using a .so filename extension. On
Linux, this is done by passing the −shared option to the linker:

% pgf95 -shared -o tobeshared.so tobeshared.o

Note that compilation and generation of the shared object can be performed in one step using both
the −fpic option and the appropriate option for generation of a shared object file.

Step 3 - To use a shared object file, compile and link the program which will reference functions
or subroutines in the shared object file using the appropriate PGI compiler and listing the shared
object on the link line:

% pgf95 -o myprog myprof.f tobeshared.so

Step 4 - You now have an executable myprog which does not include any code from functions or
subroutines in tobeshared.so, but which can be executed and dynamically linked to that code.
By default, when the program is linked to produce myprog, no assumptions are made on the
location of tobeshared.so. In order for myprog to execute correctly, you must initialize the
environment variable LD_LIBRARY_PATH to include the directory containing
tobeshared.so. If LD_LIBRARY_PATH is already initialized, it is important not to overwrite
its contents. Assuming you have placed tobeshared.so in a directory
/home/myusername/bin, you can initialize LD_LIBRARY_PATH to include that directory
and preserve its existing contents as follows:

% setenv LD_LIBRARY_PATH “$LD_LIBRARY_PATH”:/home/myusername/bin

If you know that tobeshared.so will always reside in a specific directory, you can create the
executable myprog in a form that assumes this using the −R link-time option. For example, you
can link as follows:

% pgf95 -o myprog myprof.f tobeshared.so -R/home/myusername/bin

Libraries 175

Note that there is no space between −R and the directory name. As with the −L option, no space
can be present. If the −R option is used, it is not necessary to initialize LD_LIBRARY_PATH. In
the example above, the dynamic linker will always look in /home/myusername/bin to
resolve references to tobeshared.so. By default, if the LD_LIBRARY_PATH environment
variable is not set, the linker will only search /usr/lib for shared objects.

The command ldd is a useful tool when working with shared object files and executables that
reference them. When applied to an executable as follows:

% ldd myprog

ldd lists all shared object files referenced in the executable along with the pathname of the
directory from which they will be extracted. If the pathname is not hard-coded using the −R option,
and if LD_LIBRARY_PATH is not initialized, the pathname is listed as “not found”. See the online
man page for ldd for more information on options and usage.

8.3 Creating and Using Dynamic-Link Libraries on Windows
Some of the PGI compiler runtime libraries are available in both static library and dynamic-link
library (DLL) form for Windows. There are several differences between these two types of
libraries.

Both libraries are used when resolving external references when linking an executable, but the
process differs for each type of library. When linking with a static library, the code needed from
the library is incorporated into the executable. Once the executable has been built, the library is no
longer needed; the executable does not rely on the static library at runtime. When linking with a
DLL, external references are resolved using the DLL's import library, not the DLL itself. The code
in the DLL associated with the external references does not become a part of the executable. The
DLL is loaded when the executable that needs it is run.

For the DLL to be loaded in this manner, the DLL must be in your path, Windows directory, or
Windows systems directory.

Static libraries and DLLs also handle global data differently. If two static libraries contain global
data with the same name, and both libraries are linked to the executable, the global data item in the
libraries will be resolved to the same memory location. If this situation occurs with two DLLs,
however, the global data items in each DLL are resolved to separate memory locations. In short,
global data in a DLL cannot be directly accessed from outside the DLL.

The PGI runtime DLLs can be used to create both executables and other DLLs.

176 Chapter 8

The following switches apply:

–Mdll
Link with the DLL version of the runtime libraries. This flag is required when
linking with any DLL built by the PGI compilers.

–Mmakedll
Generate a dynamic-link library or DLL.

–Mnopgdllmain
Do not link the module containing the default DllMain() into the DLL. This flag
applies to building DLLs with the PGF95 and PGHPF compilers. If you want to
replace the default DllMain() routine with a custom DllMain(), use this flag and
add the object containing the custom DllMain() to the link line. The latest
version of the default DllMain() is included in the Release Notes; the code in this
routine specific to PGF95 and PGHPF must be incorporated into the custom
version of DllMain() to ensure the appropriate function of your DLL.

–o <file>
Passed to the linker. Name the DLL <file>.

––output-def <file>
Passed to linker. Generate a .def named <file> for the DLL. The .def file
contains the symbols exported by the DLL. Generating a .def file is not required
when building a DLL but can be a useful debugging tool if the DLL does not
contain the symbols that you expect it to contain. You can also create your own
.def file, containing the symbols you want to export to the DLL. To use your .def
file, add it to the link line and omit ––output-def.

––out-implib <file>
Passed to linker. Generate an import library named <file> for the DLL. A DLL’s
import library is the interface used when linking an executable that depends on
routines in a DLL.

––export-all-symbols
Passed to linker. Use this flag to export all global and weak defined symbols to
the DLL. Even with this flag, some symbols are not exported; see
––no-default-excludes.

Libraries 177

––no-default-excludes
Passed to linker. When ––export-all-symbols is used, there are still some special
symbols (i.e., DllMain@12) that are not exported. Use ––no-default-excludes
to export these symbols to the DLL.

To use the PGI compilers to create an executable that links to the DLL form of the runtime, use the
compiler flag –Mdll. The executable built will be smaller than one built without –Mdll; the PGI
runtime DLLs, however, must be available when the executable is run. The –Mdll flag must be
used when an executable is linked against a DLL built by the PGI compilers.

Each PGI compiler can also create DLLs for Windows. The following examples outline how to
use
–Mmakedll to do so.

Example 1: Build a DLL out of two source files, object1.f and object2.f, and use it to
build the main source file, prog1.f.

Step 1:

object1.f:

 subroutine subf1 (n)
 integer n
 n=1
 print *,"n=",n
 return
 end

object2.f:

 function funf2 ()
 real funf2
 funf2 = 2.0
 return
 end

178 Chapter 8

prog1.f:

 program test
 external subf1
 real funf2, val
 integer n
 call subf1(n)
 val = funf2()
 write (*,*) 'val = ', val
 stop
 end

Step 2: Create the DLL obj12.dll and its import library obj12.lib using the following
series of commands:

% pgf95 -c object1.f object2.f
% pgf95 object1.o object2.o -Mmakedll -o obj12.dll \
--out-implib obj12.lib

Step 3: Compile the main program:

% pgf95 -Mdll -o prog1 prog1.f -L. -lobj12

The –Mdll switch causes the compiler to link against the PGI runtime DLLs instead of the PGI
runtime static libraries. The –Mdll switch is required when linking against any PGI-compiled DLL
such as obj12.dll. The –l switch is used to specify that obj12.lib, the DLL’s import
library, will be used to resolve the calls to subf1 and funf2 in prog1.f.

Step 4: Ensure that obj12.dll is in your path, then run the executable 'prog1' to determine if the
DLL was successfully created and linked:

% prog1
n=1
val = 2.000000
FORTRAN STOP

Libraries 179

Should you wish to change obj12.dll without changing the subroutine or function interfaces,
no rebuilding of prog1 is necessary. Just recreate obj12.dll, and the new obj12.dll will be
loaded at runtime.

Example 2: Build two DLLs when each DLL is dependent on the other, and use them to build the
main program. In the following source files, object3.c makes calls to routines defined in
object4.c, and vice versa. This situation of mutual imports requires two steps to build each
DLL.

object3.c:

extern void func_4b(void);
void func_3a(void) {
 printf("func_3a, calling a routine in obj4.dll\n");
 func_4b();
}
void func_3b(void) {
 printf("func_3b\n");
}

object4.c:

extern void func_3b(void);
void func_4a(void) {
 printf("func_4a, calling a routine in obj3.dll\n");
 func_3b();
}
void func_4b(void) {
 printf("func_4b\n");
}

prog2.c:

extern void func_3a(void);
extern void func_4a(void);
int main() {
 func_3a();
 func_4a();
}

180 Chapter 8

Step 1: To make obj3.dll and obj4.dll, first compile the source and create an import library
for each DLL that will be built.

% pgcc -c object3.c
% pgcc object3.o -Mmakedll -o obj3.dll --out-implib obj3.lib
Creating library file: obj3.lib
object3.o(.text+0x24):object3.c: undefined reference to `func_4b'
% pgcc -c object4.c
% pgcc object4.o -Mmakedll -o obj4.dll --out-implib obj4.lib
Creating library file: obj4.lib
object4.o(.text+0x24):object4.c: undefined reference to `func_3b'

The undefined reference errors are to be expected in the first step of building DLLs with mutual
imports. These errors will be resolved in the next step where each DLL is built and linked against
the import library previously created for the other DLL.

% pgcc object3.o -Mmakedll -o obj3.dll -L. -lobj4
% pgcc object4.o -Mmakedll -o obj4.dll -L. -lobj3

Step 2: Compile the main program and link against the import libraries for obj3.dll and
obj4.dll.

% pgcc -Mdll -o prog2 prog2.c -L. -lobj3 -lobj4

Step 3: Execute prog2 to ensure that the DLLs were created properly:

% prog2
func_3a, calling a routine in obj4.dll
func_4b
func_4a, calling a routine in obj3.dll
func_3b

Libraries 181

8.5 Using LIB3F
The PGI Fortran compilers include complete support for the de facto standard LIB3F library
routines on both Linux and Win32 operating systems. See the PGI Fortran Reference manual for
a complete list of available routines in the PGI implementation of LIB3F.

8.6 LAPACK, the BLAS and FFTs
Pre-compiled versions of the public domain LAPACK and BLAS libraries are included with the
PGI compilers on Linux and Windows systems in the files $PGI/<target>/lib/lapack.a
and $PGI/<target>/lib/blas.a respectively, where <target> is replaced with the
appropriate target name (linux86, linux86-64, or nt86).

To use these libraries, simply link them in using the −l option when linking your main program:

% pgf95 myprog.f -lblas -llapack

Highly optimized assembly-coded versions of the BLAS and certain FFT routines may be
available for your platform. In some cases, these are shipped with the PGI compilers. See the
current release notes for the PGI compilers you are using to determine if these optimized libraries
exist, where they can be downloaded (if necessary), and how to incorporate them into your
installation as the default.

8.7 The C++ Standard Template Library
The PGC++ compiler includes a bundled copy of the STLPort Standard C++ Library. See the
online Standard C++ Library tutorial and reference manual at http://www.stlport.com for further
details and licensing.

8.8 Environment Variables
Several environment variables can be used to alter the default behavior of the PGI compilers and
the executables which they generate. Many of these environment variables are documented in
context in other sections of the PGI User’s Guide. They are gathered here for easy reference.
Specifically excluded are environment variables specific to OpenMP which are used to control the
behavior of OpenMP programs. See section 5.17, Environment Variables, for a list and
description of environment variables that affect the execution of Fortran OpenMP programs. See
section 6.16, Environment Variables, for a list and description of environment variables that affect

http://www.stlport.com/

182 Chapter 8

the execution of C and C++ OpenMP programs. Also excluded are environment variables that
control the behavior of the PGDBG debugger or PGPROF profiler. See the PGI Tools Guide for a
description of environment variables that affect these tools.

FORTRAN_OPT - If this variable exists and contains the value vaxio, the record length in the
open statement is in units of 4-byte words, and the $ edit descriptor only has an effect for lines
beginning with a space or +. If this variable exists and contains the value format_relaxed, an
I/O item corresponding to a numerical edit descriptor (F, E, I, etc.) is not required to be a type
implied by the descriptor. For example:

$ setenv FORTRAN_OPT vaxio

will cause the PGI Fortran compilers to use VAX I/O conventions as defined above.

MPSTKZ - increase the size of the stacks used by threads executing in parallel regions. It is for use
with programs that utilize large amounts of thread-local storage in the form of private variables or
local variables in functions or subroutines called within parallel regions. The value should be an
integer <n> concatenated with M or m to specify stack sizes of n megabytes. For example:

$ setenv MPSTKZ 8M

MP_BIND - the MP_BIND environment variable can be set to yes or y to bind processes or threads
executing in a parallel region to physical processors, or to no or n to disable such binding. The
default is to not bind processes to processors. This is an execution time environment variable
interpreted by the PGI runtime support libraries. It does not affect the behavior of the PGI
compilers in any way. Note: the MP_BIND environment variable is not supported on all platforms.

MP_BLIST - In addition to the MP_BIND variable, it is possible to define the thread-CPU
relationship. For example, setting MP_BLIST=3,2,1,0 maps CPUs 3, 2, 1 and 0 to threads 0, 1, 2
and 3 respectively.

MP_SPIN - When a thread executing in a parallel region enters a barrier, it spins on a semaphore.
MP_SPIN can be used to specify the number of times it checks the semaphore before calling
sched_yield() (on linux) or _sleep() (on Win32). These calls cause the thread to be re-
scheduled, allowing other processes to run. The default values are 100 (Linux) and 10000
(Win32).

MP_WARN - By default, a warning will be printed to stderr if you execute an OpenMP or auto-
parallelized program with NCPUS or OMP_NUM_THREADS set to a value larger than the number of
physical processors in the system. For example, if you produce a parallelized executable a.out and
execute as follows on a system with only one processor:

Libraries 183

 % setenv NCPUS 2
 % a.out
 Warning: OMP_NUM_THREADS or NCPUS (2) greater than available cpus (1)
 FORTRAN STOP

Setting MP_WARN to no will eliminate these warning messages.

NCPUS - The NCPUS environment variable can be used to set the number of processes or threads
used in parallel regions. The default is to use only one process or thread (serial mode). If both
OMP_NUM_THREADS and NCPUS are set, the value of OMP_NUM_THREADS takes precedence.
Warning: setting NCPUS to a value larger than the number of physical processors or cores in your
system can cause parallel programs to run very slowly.

NCPUS_MAX - The NCPUS_MAX environment variable can be used to limit the maximum number of
processes or threads used in a parallel program. Attempts to dynamically set the number of
processes or threads to a higher value, for example using set_omp_num_threads(), will cause
the number of processes or threads to be set at the value of NCPUS_MAX rather than the value
specified in the function call.

NO_STOP_MESSAGE - If this variable exists, the execution of a plain STOP statement does not
produce the message FORTRAN STOP. The default behavior of the PGI Fortran compilers is to
issue this message.

PGI - The PGI environment variable specifies the root directory where the PGI compilers and
tools are installed. The default value of this variable is /usr/pgi. In most cases, the name of this
root directory is derived dynamically by the PGI compilers and tools through determination of the
path to the instance of the compiler or tool that has been invoked. However, there are still some
dependences on the PGI environment variable, and it can be used as a convenience when
initializing your environment for use of the PGI compilers and tools. For example, assuming you
use csh and want the 64-bit linux86-64 versions of the PGI compilers and tools to be default:

 % setenv PGI /usr/pgi
 % setenv MANPATH "$MANPATH":$PGI/linux86/6.0/man
 % setenv LM_LICENSE_FILE $PGI/license.dat
 % set path = ($PGI/linux86-64/6.0/bin $path)

PGI_CONTINUE - If the PGI_CONTINUE environment variable is set upon execution of a program
compiled with –Mchkfpstk, the stack will be automatically cleaned up and execution will continue.
There is a performance penalty associated with the stack cleanup. If PGI_CONTINUE is set to
verbose, the stack will be automatically cleaned up and execution will continue after printing of a
warning message.

184 Chapter 8

STATIC_RANDOM_SEED - The first call to the Fortran 90/95 RANDOM_SEED intrinsic without
arguments will reset the random seed to a default value, then advance the seed by a variable
amount based on time. Subsequent calls to RANDOM_SEED without arguments will reset the
random seed to the same initial value as the first call. Unless the time is exactly the same, each
time a program is run a different random number sequence will be generated. You can force the
seed returned by RANDOM_SEED to be constant, thereby generating the same sequence of random
numbers at each execution of the program, by setting the environment variable
STATIC_RANDOM_SEED to yes.

TMPDIR - Can be used to specify the directory that should be used for placement of any temporary
files created during execution of the PGI compilers and tools.

TZ - Can be used to explicitly set the time zone, and is used in some contexts by the PGC++
compiler. For more information on the possible settings for TZ, use the tzselect utility on Linux
for a detailed description of possible settings and step-by-step instructions for setting the value of
TZ for a given time zone.

Fortran C and C++ Data Types 185

Chapter 9
Fortran, C and C++ Data Types
This chapter describes the scalar and aggregate data types recognized by the PGI Fortran, C, and
C++ compilers, the format and alignment of each type in memory, and the range of values each
type can take on X86 or X86-64 processor-based systems running a 32-bit operating system. For
more information on X86-specific data representation, refer to the System V Application Binary
Interface, Processor Supplement, listed in the Preface. This chapter specifically does not address
X86-64 processor-based systems running a 64-bit operating system, because the application
binary interface (ABI) for those systems is still evolving. See http://www.x86-64.org/abi.pdf for
the latest version of this ABI.

9.1 Fortran Data Types

9.1.1 Fortran Scalars
A scalar data type holds a single value, such as the integer value 42 or the real value 112.6. Table
9-1 lists scalar data types, their size, format and range. Table 9-2 shows the range and
approximate precision for Fortran real data types. Table 9-3 shows the alignment for different
scalar data types. The alignments apply to all scalars, whether they are independent or contained
in an array, a structure or a union.

Table 9-1: Representation of Fortran Data Types

Fortran
Data Type

Format Range

INTEGER 2's complement integer -231 to 231-1
INTEGER*2 2's complement integer -32768 to 32767
INTEGER*4 same as INTEGER
INTEGER*8 same as INTEGER -263 to 263-1

LOGICAL same as INTEGER true or false
LOGICAL*1 8 bit value true or false
LOGICAL*2 16 bit value true or false
LOGICAL*4 same as INTEGER true or false

186 Chapter 9

Fortran
Data Type

Format Range

LOGICAL*8 same as INTEGER true or false

BYTE 2's complement -128 to 127

REAL Single-precision floating point 10-37 to 1038 (1)
REAL*4 Single-precision floating point 10-37 to 1038 (1)
REAL*8 Double-precision floating point 10-307 to 10308 (1)
DOUBLE PRECISION Double-precision floating point 10-307 to 10308 (1)
COMPLEX See REAL See REAL
DOUBLE COMPLEX See DOUBLE PRECISION See DOUBLE

PRECISION
COMPLEX*16 Same as above Same as above

CHARACTER*n Sequence of n bytes

(1) Approximate value

The logical constants .TRUE. and .FALSE. are all ones and all zeroes, respectively. Internally, the
value of a logical variable is true if the least significant bit is one and false otherwise. When the
option –Munixlogical is set, a logical variable with a non-zero value is true and with a zero value
is false.

Table 9-2: Real Data Type Ranges

Data Type Binary Range Decimal Range Digits of Precision
REAL 2-126 to 2128 10-37 to 1038 7-8

 REAL*8 2-1022 to 21024 10-307 to 10308 15-16

Fortran, C and C++ Data Types 187

Table 9-3: Scalar Type Alignment

Type Is Aligned on a
LOGICAL*1 1-byte boundary
LOGICAL*2 2-byte boundary
LOGICAL*4 4-byte boundary
LOGICAL*8 8-byte boundary

BYTE 1-byte boundary

INTEGER*2 2-byte boundary
INTEGER*4 4-byte boundary
INTEGER*8 8-byte boundary

REAL*4 4-byte boundary
REAL*8 8-byte boundary

COMPLEX*8 4-byte boundary
COMPLEX*16 8-byte boundary

9.1.2 FORTRAN 77 Aggregate Data Type Extensions
The PGF77 compiler supports de facto standard extensions to FORTRAN 77 that allow for
aggregate data types. An aggregate data type consists of one or more scalar data type objects.
You can declare the following aggregate data types:

array consists of one or more elements of a single data type placed in contiguous
locations from first to last.

structure is a structure that can contain different data types. The members are
allocated in the order they appear in the definition but may not occupy
contiguous locations.

union is a single location that can contain any of a specified set of scalar or
aggregate data types. A union can have only one value at a time. The data
type of the union member to which data is assigned determines the data
type of the union after that assignment.

188 Chapter 9

The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members. Arrays use the alignment of
their members.

Array types align according to the alignment of the array elements. For example,
an array of INTEGER*2 data aligns on a 2 byte boundary.

Structures and Unions align according to the alignment of the most restricted data type of
the structure or union. In the next example, the union aligns on a
4-byte boundary since the alignment of C, the most restrictive
element, is four.

 STRUCTURE /ASTR/
 UNION
 MAP
 INTEGER*2 A ! 2 bytes
 END MAP
 MAP
 BYTE B ! 1 byte
 END MAP
 MAP
 INTEGER*4 C ! 4 bytes
 END MAP
 END UNION
 END STRUCTURE

Structure alignment can result in unused space called padding. Padding between members of the
structure is called internal padding. Padding between the last member and the end of the space is
called tail padding.

The offset of a structure member from the beginning of the structure is a multiple of the member’s
alignment. For example, since an INTEGER*2 aligns on a 2-byte boundary, the offset of an
INTEGER*2 member from the beginning of a structure is a multiple of two bytes.

9.1.3 Fortran 90 Aggregate Data Types (Derived Types)
The Fortran 90 standard added formal support for aggregate data types. The TYPE statement
begins a derived type data specification or declares variables of a specified user-defined type. For
example, the following would define a derived type ATTENDEE:

TYPE ATTENDEE
 CHARACTER(LEN=30) NAME

Fortran, C and C++ Data Types 189

 CHARACTER(LEN=30) ORGANIZATION
 CHARACTER (LEN=30) EMAIL
END TYPE ATTENDEE

In order to declare a variable of type ATTENDEE and access the contents of such a variable, code
such as the following would be used:

TYPE (ATTENDEE) ATTLIST(100)
. . .
ATTLIST(1)%NAME = ‘JOHN DOE’

9.2 C and C++ Data Types

9.2.1 C and C++ Scalars
Table 9-4 lists C and C++ scalar data types, their size and format. The alignment of a scalar data
type is equal to its size. Table 9-5 shows scalar alignments that apply to individual scalars and to
scalars that are elements of an array or members of a structure or union. Wide characters are
supported (character constants prefixed with an L). The size of each wide character is 4 bytes.

Table 9-4: C/C++ Scalar Data Types

Data Type Size (bytes) Format Range

unsigned char 1 ordinal 0 to 255

[signed] char 1 two's-complement
integer

-128 to 127

unsigned short 2 ordinal 0 to 65535

[signed] short 2 two's-complement
integer

-32768 to 32767

unsigned int 4 ordinal 0 to 232 -1

[signed] int
[signed] long int

4 two's-complement
integer

-231 to 231-1

unsigned long int 4 ordinal 0 to 232-1

[signed] long long
[int]

8 two's-complement
integer

-263 to 263-1

190 Chapter 9

Data Type Size (bytes) Format Range

unsigned long long
[int]

8 ordinal 0 to 264-1

float 4 IEEE single-precision
floating-point

10-37 to 1038 (1)

double 8 IEEE double-
precision
floating-point

10-307 to 10308 (1)

long double 8 IEEE double-
precision
floating-point

10-307 to 10308 (1)

bit field(2)

(unsigned value)
1 to 32 bits ordinal 0 to 2size-1, where size is the

number of bits in the bit field

bit field(2)

(signed value)
1 to 32 bits two's complement

integer
-2size-1 to 2size-1-1, where size is
the number of bits in the bit
field

pointer 4 address 0 to 232-1

enum 4 two's complement
integer

-231 to 231-1

(1) Approximate value
(2) Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need not be a
 multiple of 8 bits (1 byte)

Table 9-5: Scalar Alignment

Data Type Alignment
char is aligned on a 1-byte boundary.*
short is aligned on a 2-byte boundary.*
[long] int is aligned on a 4-byte boundary.*
enum is aligned on a 4-byte boundary.
pointer is aligned on a 4-byte boundary.
float is aligned on a 4-byte boundary.
double is aligned on an 8-byte boundary.
long double is aligned on an 8-byte boundary.

 (*) signed or unsigned

Fortran, C and C++ Data Types 191

9.2.2 C and C++ Aggregate Data Types
An aggregate data type consists of one or more scalar data type objects. You can declare the
following aggregate data types:

array consists of one or more elements of a single data type placed in contiguous
locations from first to last.

class (C++ only) is a class that defines an object and its member functions. The
object can contain fundamental data types or other aggregates including
other classes. The class members are allocated in the order they appear in
the definition but may not occupy contiguous locations.

struct is a structure that can contain different data types. The members are
allocated in the order they appear in the definition but may not occupy
contiguous locations. When a struct is defined with member functions, its
alignment issues are the same as those for a class.

union is a single location that can contain any of a specified set of scalar or
aggregate data types. A union can have only one value at a time. The data
type of the union member to which data is assigned determines the data
type of the union after that assignment.

9.2.3 Class and Object Data Layout
Class and structure objects with no virtual entities and with no base classes, that is just direct data
field members, are laid out in the same manner as C structures. The following section describes
the alignment and size of these C-like structures. C++ classes (and structures as a special case of
a class) are more difficult to describe. Their alignment and size is determined by compiler
generated fields in addition to user-specified fields. The following paragraphs describe how
storage is laid out for more general classes. The user is warned that the alignment and size of a
class (or structure) is dependent on the existence and placement of direct and virtual base classes
and of virtual function information. The information that follows is for informational purposes
only, reflects the current implementation, and is subject to change. Do not make assumptions
about the layout of complex classes or structures.

All classes are laid out in the same general way, using the following pattern (in the sequence
indicated):

• First, storage for all of the direct base classes (which implicitly includes storage for non-
virtual indirect base classes as well):

♦ When the direct base class is also virtual, only enough space is set aside for a
pointer to the actual storage, which appears later.

192 Chapter 9

♦ In the case of a non-virtual direct base class, enough storage is set aside for its own
non-virtual base classes, its virtual base class pointers, its own fields, and its virtual
function information, but no space is allocated for its virtual base classes.

• Next, storage for the class’s own fields.

• Next, storage for virtual function information (typically, a pointer to a virtual function table).

• Finally, storage for its virtual base classes, with space enough in each case for its own non-
virtual base classes, virtual base class pointers, fields, and virtual function information.

9.2.4 Aggregate Alignment
The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members. Arrays use the alignment of
their members.

Arrays align according to the alignment of the array elements. For example, an
array of short data type aligns on a 2-byte boundary.

Structures and Unions
align according to the most restrictive alignment of the enclosing
members. For example the union un1 below aligns on a 4-byte boundary
since the alignment of c, the most restrictive element, is four:

 union un1 {

 short a; /* 2 bytes */

 char b; /* 1 byte */

 int c; /* 4 bytes */

 };

Structure alignment can result in unused space, called padding. Padding between members of a
structure is called internal padding. Padding between the last member and the end of the space
occupied by the structure is called tail padding. Figure 9-1 illustrates structure alignment.
Consider the following structure:

struct strc1 {
 char a; /* occupies byte 0 */
 short b; /* occupies bytes 2 and 3 */
 char c; /* occupies byte 4 */
 int d; /* occupies bytes 8 through 11 */
};

Fortran, C and C++ Data Types 193

b byte 0

xxxx byte 4

byte 8d

xxxx a

c

Figure 9-1: Internal Padding in a Structure

Figure 9-2 shows how tail padding is applied to a structure aligned on a doubleword boundary.

struct strc2{
 int m1[4]; /* occupies bytes 0 through 15 */
 double m2; /* occupies bytes 16 through 23 */
 short m3; /* occupies bytes 24 and 25 */
} st;

9.2.5 Bit-field Alignment
Bit-fields have the same size and alignment rules as other aggregates, with several additions to
these rules:

• Bit-fields are allocated from right to left.

• A bit-field must entirely reside in a storage unit appropriate for its type. Bit-fields never cross
unit boundaries.

• Bit-fields may share a storage unit with other structure/union members, including members
that are not bit-fields.

• Unnamed bit-field's types do not affect the alignment of a structure or union.

• Items of [signed/unsigned] long long type may not appear in field declarations.

194 Chapter 9

st.m1[0]

st.m1[1]

st.m1[2]

st.m1[3]

m2

m2

xxxx m3

xxxx

byte 0

byte 4

byte 8

byte 12

byte 16

byte 20

byte 24

byte 28

Figure 9-2: Tail Padding in a Structure

9.2.6 Other Type Keywords in C and C++
The void data type is neither a scalar nor an aggregate. You can use void or void* as the return
type of a function to indicate the function does not return a value, or as a pointer to an unspecified
data type, respectively.

The const and volatile type qualifiers do not in themselves define data types, but associate
attributes with other types. Use const to specify that an identifier is a constant and is not to be
changed. Use volatile to prevent optimization problems with data that can be changed from
outside the program, such as memory-mapped I/O buffers.

Inter-language Calling 195

Chapter 10
Inter-language Calling
This chapter describes inter-language calling conventions for C, C++, and Fortran programs using
the PGI compilers. The following sections describe how to call a Fortran function or subroutine
from a C or C++ program and how to call a C or C++ function from a Fortran program. For
information on calling assembly language programs, refer to Appendix A, Run-time Environment.

10.1 Overview of Calling Conventions
This chapter includes information on the following topics:

• Functions and subroutines in Fortran, C, and C++

• Naming and case conversion conventions

• Compatible data types

• Argument passing and special return values

• Arrays and Indexes

• Windows calling conventions

Default Fortran calling conventions under Windows differ from those used under Linux operating
systems. Windows programs compiled using the −Munix Fortran command-line option use the
UNIX convention rather than the default Windows convention. Sections 6.1 through 6.13 describe
how to perform inter-language calling using the UNIX convention. All information in those
sections pertaining to compatibility of arguments applies to Windows as well. See Section 10.14
Windows Calling Conventions for details on the symbol name and argument passing conventions
used on Windows.

10.2 Inter-language Calling Considerations
In general, when argument data types and function return values agree you can call a C or C++
function from Fortran and likewise, you can call a Fortran function from C or C++. You may need
to develop special procedures in cases where data types for arguments do not agree. For example,
the Fortran COMPLEX type does not have a matching type in C, it is still possible to provide inter-

196 Chapter 10

language calls but there are no general calling conventions for such cases. In this instance, you
need to develop a special procedure.

Follow these guidelines:

• Note that if a C++ function contains objects with constructors and destructors, calling
such a function from either C or Fortran will not be possible unless the initialization in
the main program is performed from a C++ program where constructors and destructors
are properly initialized.

• In general, you can call a C function from C++ without problems as long as you use the
extern "C" keyword to declare the C function in the C++ program. This prevents name
mangling for the C function name. If you want to call a C++ function from C, likewise
you have to use the extern "C" keyword to declare the C++ function. This keeps the
C++ compiler from mangling the name of the function.

• You can use the __cplusplus macro to allow a program or header file to work for both
C and C++. For example, the following defines in the header file stdio.h allow this file to
work for both C and C++.

#ifndef _STDIO_H
#define _STDIO_H

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
.
. /* Functions and data types defined... */
.
#ifdef __cplusplus
}
#endif /* __cplusplus */

#endif

C++ member functions cannot be declared extern, as their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

Inter-language Calling 197

10.3 Functions and Subroutines
Fortran, C, and C++ define functions and subroutines differently. For a Fortran program calling a
C or C++ function, observe the following return value convention:

• When the C or C++ function returns a value, call it from Fortran as a function, and otherwise
call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return a similar type. Table 10-1
lists compatible types. If the call is to a Fortran subroutine, a Fortran CHARACTER function, or a
Fortran COMPLEX function, call it from C/C++ as a function that returns void. The exception to this
convention is when a Fortran subroutine has alternate returns; call such a subroutine from C/C++
as a function returning int whose value is the value of the integer expression specified in the
alternate RETURN statement.

10.4 Upper and Lower Case Conventions, Underscores
By default on Linux systems, all Fortran symbol names are converted to lower case. C and C++
are case sensitive, so upper-case function names stay upper-case. When you use inter-language
calling, you can either name your C/C++ functions with lower-case names, or invoke the Fortran
compiler command with the option –Mupcase, in which case it will not convert symbol names to
lower-case.

When programs are compiled using one of the PGI Fortran compilers on Linux systems, an
underscore is appended to Fortran global names (names of functions, subroutines and common
blocks). This mechanism distinguishes Fortran name space from C/C++ name space. Use these
naming conventions:

• If you call a C/C++ function from Fortran, you should rename the C/C++ function by
appending an underscore (or use C$PRAGMA C in the Fortran program, refer to Chapter 7,
Optimization Directives and Pragmas, for details on C$PRAGMA C).

• If you call a Fortran function from C/C++, you should append an underscore to the
Fortran function name in the calling program.

10.5 Compatible Data Types
Table 10-1 shows compatible data types between Fortran and C/C++. Table 10-2 shows how the
Fortran COMPLEX type may be represented in C/C++. If you can make your function/subroutine
parameters and return values match types, you should be able to use inter-language calling.

198 Chapter 10

Table 10-1: Fortran and C/C++ Data Type Compatibility

Fortran
Type (lower case)

C/C++
Type

Size
(bytes)

character x char x 1

character*n x char x[n] n

real x float x 4

real*4 x float x 4

real*8 x double x 8

double precision double x 8

integer x int x 4

integer*1 x signed char x 1

integer*2 x short x 2

integer*4 x int x 4

integer*8 x long long x 8

logical x int x 4

logical*1 x char x 1

logical*2 x short x 2

logical*4 int x 4

logical*8 long long x 8

 Table 10-2: Fortran and C/C++ Representation of the COMPLEX Type

Fortran
Type (lower case)

C/C++
Type

Size
(bytes)

complex x struct
 {float r,i;} x;

8

complex*8 x struct
 {float r,i;} x;

8

double complex x struct
 {double dr,di;} x;

16

Inter-language Calling 199

10.5.1 Fortran Named Common Blocks
A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore. For example, the Fortran common block:

INTEGER I
COMPLEX C
DOUBLE COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d

is represented in C with the following equivalent:

extern struct {
 int i;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

and in C++ with the following equivalent:

extern “C” struct {
 int i;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

10.6 Argument Passing and Return Values
In Fortran, arguments are passed by reference (i.e. the address of the argument is passed, rather
than the argument itself). In C/C++, arguments are passed by value, except for strings and arrays,
which are passed by reference. Due to the flexibility provided in C/C++, you can work around
these differences. Solving the parameter passing differences generally involves intelligent use of
the & and * operators in argument passing when C/C++ calls Fortran and in argument declarations
when Fortran calls C/C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the
string is passed to a calling function. On Linux systems, or when using the UNIX calling

200 Chapter 10

convention on Windows (−Munix), the compiler places the length argument(s) at the end of the
parameter list, following the other formal arguments. The length argument is passed by value, not
by reference.

10.6.1 Passing by Value (%VAL)
When passing parameters from a Fortran subprogram to a C/C++ function, it is possible to pass by
value using the %VAL function. If you enclose a Fortran parameter with %VAL(), the parameter is
passed by value. For example, the following call passes the integer I and the logical BVAR by
value.

INTEGER*1 I
LOGICAL*1 BVAR

CALL CVALUE (%VAL(I), %VAL(BVAR))

10.6.2 Character Return Values
Section 10.3 Functions and Subroutines describes the general rules for return values for C/C++
and Fortran inter-language calling. There is a special return value to consider. When a Fortran
function returns a character, two arguments need to be added at the beginning of the C/C++
calling function’s argument list:

• the address of the return character or characters

• the length of the return character

Example 10-1 illustrates the extra parameters, tmp and 10, supplied by the caller:

 CHARACTER*(*) FUNCTION CHF(C1, I)
 CHARACTER*(*) C1
 INTEGER I
 END

extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

Example 10-1: Character Return Parameters

Inter-language Calling 201

If the Fortran function is declared to return a character value of constant length, for example
CHARACTER*4 FUNCTION CHF(), the second extra parameter representing the length must still be
supplied, but is not used.

Note: The value of the character function is not automatically
NULL-terminated.

10.6.3 Complex Return Values
When a Fortran function returns a complex value, an argument needs to be added at the beginning
of the C/C++ calling function’s argument list; this argument is the address of the complex return
value. Example 10-2 illustrates the extra parameter, cplx, supplied by the caller:

 COMPLEX FUNCTION CF(C, I)
 INTEGER I
 . . .
 END

extern void cf_();
typedef struct {float real, imag;} cplx;
cplx c1;
int i;
cf_(&c1, &i);

Example 10-2: COMPLEX Return Values

10.7 Array Indices
C/C++ arrays and Fortran arrays use different default initial array index values. By default,
C/C++ arrays start at 0 and Fortran arrays start at 1. If you adjust your array comparisons so that a
Fortran second element is compared to a C/C++ first element, and adjust similarly for other
elements, you should not have problems working with this difference. If this is not satisfactory,
you can declare your Fortran arrays to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses
column-major order and C/C++ use row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows and columns, row
and column indexes can simply be reversed. For arrays other than single dimensional arrays, and
square two-dimensional arrays, inter-language function mixing is not recommended.

202 Chapter 10

10.8 Example - Fortran Calling C
Example 10-4 shows a C function that is called by the Fortran main program shown in Example
10-3. Notice that each argument is defined as a pointer, since Fortran passes by reference. Also
notice that the C function name uses all lower-case and a trailing "_".

 logical*1 bool1
 character letter1
 integer*4 numint1, numint2
 real numfloat1
 double precision numdoub1
 integer*2 numshor1
 external cfunc
 call cfunc (bool1, letter1, numint1, numint2,
& numfloat1, numdoub1, numshor1)
 write(*, "(L2, A2, I5, I5, F6.1, F6.1, I5)")
& bool1, letter1, numint1, numint2, numfloat1,
& numdoub1, numshor1
 end

Example 10-3: Fortran Main Program fmain.f

#define TRUE 0xff
#define FALSE 0
void
cfunc_(bool1, letter1, numint1, numint2, numfloat1,\
 numdoub1, numshor1, len_letter1)
 char *bool1, *letter1;
 int *numint1, *numint2;
 float *numfloat1;
 double *numdoub1;
 short *numshor1;
 int len_letter1;
{
 *bool1 = TRUE;
 *letter1 = 'v';
 *numint1 = 11;
 *numint2 = -44;
 *numfloat1 = 39.6 ;
 *numdoub1 = 39.2 ;

Inter-language Calling 203

 *numshor1 = 981;
}

Example 10-4: C function cfunc_

Compile and execute the program fmain.f with the call to cfunc_ using the following command
lines:

$ pgcc -c cfunc.c
$ pgf95 cfunc.o fmain.f

Executing the a.out file should produce the following output:

T v 11 -44 39.6 39.2 981

10.9 Example - C Calling Fortran
Example 10-6 shows a C main program that calls the Fortran subroutine shown in Example 10-5.
Notice that each call uses the & operator to pass by reference. Also notice that the call to the
Fortran subroutine uses all lower-case and a trailing "_".

 subroutine forts (bool1, letter1, numint1,
& numint2, numfloat1, numdoub1, numshor1)
 logical*1 bool1
 character letter1
 integer numint1, numint2
 double precision numdoub1
 real numfloat1
 integer*2 numshor1

 bool1 = .true.
 letter1 = "v"
 numint1 = 11
 numint2 = -44
 numdoub1 = 902
 numfloat1 = 39.6
 numshor1 = 299
 return
 end

Example 10-5: Fortran Subroutine forts.f

204 Chapter 10

main ()
{
 char bool1, letter1;
 int numint1, numint2;
 float numfloat1;
 double numdoub1;
 short numshor1;
 extern void forts_ ();
 forts_(&bool1,&letter1,&numint1,&numint2,&numfloat1,
 &numdoub1,&numshor1, 1);
 printf(" %s %c %d %d %3.1f %.0f %d\n",
 bool1?"TRUE":"FALSE",letter1,numint1,
 numint2, numfloat1, numdoub1, numshor1);
}

Example 10-6: C Main Program cmain.c

To compile this Fortran subroutine and C program, use the following commands:

$ pgcc -c cmain.f
$ pgf95 -Mnomain cmain.o forts.f

Executing the resulting a.out file should produce the following output:

TRUE v 11 -44 39.6 902 299

10.10 Example - C ++ Calling C
void cfunc(num1, num2, res)
int num1, num2, *res;
{
 printf("func: a = %d b = %d ptr c = %x\n",num1,num2,res);
 *res=num1/num2;
 printf("func: res = %d\n",*res);
}

Example 10-7: Simple C Function cfunc.c

xtern "C" void cfunc(int n, int m, int *p);
#include <iostream>
main()
{
 int a,b,c;

Inter-language Calling 205

 a=8;
 b=2;
 cout << "main: a = "<<a<<" b = "<<b<<" ptr c = "<<&c<< endl;
 cfunc(a,b,&c);
 cout << "main: res = "<<c<<endl;
}

Example 10-8: C++ Main Program cpmain.C Calling a C Function

To compile this C function and C++ main program, use the following commands:

$ pgcc -c csub.c
$ pgCC cpmain.C csub.o

Executing the resulting a.out file should produce the following output:

main: a = 8 b = 2 ptr c = 0xbffffb94
func: a = 8 b = 2 ptr c = bffffb94
func: res = 4
main: res = 4

10.11 Example - C Calling C++
#include <iostream>
extern "C" void cpfunc(int num1,int num2,int *res)
{
 cout << "func: a = "<<num1<<" b = "<<num2<<" ptr c ="<<res<<endl;
 *res=num1/num2;
 cout << "func: res = "<<res<<endl;

}

Example 10-9: Simple C++ Function cpfunc.C with Extern C

extern void cpfunc(int a, int b, int *c);
#include <stdio.h>
main()
{
 int a,b,c;
 a=8;
 b=2;
 printf(“main: a = %d b = %d ptr c = %x\n”,a,b,&c);
 cpfunc(a,b,&c);
 printf(“main: res = %d\n”,c);

206 Chapter 10

}
Example 10-10: C Main Program cmain.c Calling a C++ Function

To compile this C function and C++ main program, use the following commands:

$ pgcc -c cmain.c
$ pgCC cmain.o cpsub.C

Executing the resulting a.out file should produce the following output:

main: a = 8 b = 2 ptr c = 0xbffffb94
func: a = 8 b = 2 ptr c = bffffb94
func: res = 4
main: res = 4

Note that you cannot use the extern "C" form of declaration for an object’s member functions.

10.12 Example - Fortran Calling C++
The Fortran main program shown in Example 10-11 calls the C++ function shown in Example
10-12. Notice that each argument is defined as a pointer in the C++ function, since Fortran passes
by reference. Also notice that the C++ function name uses all lower-case and a trailing "_":

 logical*1 bool1
 character letter1
 integer*4 numint1, numint2
 real numfloat1
 double precision numdoub1
 integer*2 numshor1
 external cfunc
 call cpfunc (bool1, letter1, numint1,
& numint2, numfloat1, numdoub1, numshor1)
 write(*, "(L2, A2, I5, I5, F6.1, F6.1, I5)")
& bool1, letter1, numint1, numint2, numfloat1,
& numdoub1, numshor1
 end

Example 10-11: Fortran Main Program fmain.f calling a C++ function

#define TRUE 0xff
#define FALSE 0
extern "C" {
extern void cpfunc_ (

Inter-language Calling 207

 char *bool1, *letter1,
 int *numint1, *numint2,
 float *numfloat1,
 double *numdoub1,
 short *numshort1,
 int len_letter1) {
 *bool1 = TRUE;
 *letter1 = 'v';
 *numint1 = 11;
 *numint2 = -44;
 *numfloat1 = 39.6;
 *numdoub1 = 39.2;
 *numshort1 = 981;
}
}

Example 10-12: C++ function cpfunc.C

Assuming the Fortran program is in a file fmain.f, and the C++ function is in a file cpfunc.C, create
an executable, using the following command lines:

$ pgCC -c cpfunc.C
$ pgf95 cpfunc.o fmain.f

Executing the a.out file should produce the following output:

T v 11 -44 39.6 39.2 981

10.13 Example - C++ Calling Fortran
Example 10-13 shows a Fortran subroutine called by the C++ main program shown in Example
10-14. Notice that each call uses the & operator to pass by reference. Also notice that the call to the
Fortran subroutine uses all lower-case and a trailing "_":

 subroutine forts (bool1, letter1, numint1,
 & numint2, numfloat1, numdoub1, numshor1)
 logical*1 bool1
 character letter1
 integer numint1, numint2
 double precision numdoub1
 real numfloat1

208 Chapter 10

 integer*2 numshor1
 bool1 = .true. ; letter1 = "v" ; numint1 = 11 ; numint2 = -44
 numdoub1 = 902 ; numfloat1 = 39.6 ; numshor1 = 299
 return
 end

Example 10-13: Fortran Subroutine forts.f

#include <iostream>
extern "C" { extern void forts_(char *,char *,int *,int *,
 float *,double *,short *); }
main ()
{
 char bool1, letter1;
 int numint1, numint2;
 float numfloat1;
 double numdoub1;
 short numshor1;
 forts_(&bool1,&letter1,&numint1,&numint2,&numfloat1,
 &numdoub1,&numshor1);
 cout << “ bool1 = “;
 bool1?cout << “TRUE “:cout << “FALSE “; cout << endl;
 cout << “ letter1 = “ << letter1 << endl;
 cout << “ numint1 = “ << numint1 << endl;
 cout << “ numint2 = “ << numint2 << endl;
 cout << “ numfloat1 = “ << numfloat1 << endl;
 cout << “ numdoub1 = “ << numdoub1 << endl;
 cout << “ numshor1 = “ << numshor1 << endl;
}

Example 10-14: C++ main program cpmain.C

To compile this Fortran subroutine and C++ program, use the following command lines:

$ pgf95 -c forts.f
$ pgCC forts.o cpmain.C -lpgf95 -lpgf95_rpm1 -lpgf952 \
 -lpgf95rtl -lpgftnrtl

Executing this C++ main should produce the following output:

bool1 = TRUE
letter1 = v
numint1 = 11

Inter-language Calling 209

numint2 = -44
numfloat1 = 39.6
numdoub1 = 902
numshor1 = 299

Note that you must explicitly link in the PGF95 runtime support libraries when linking pgf95-
compiled program units into C or C++ main programs. When linking pgf77 -compiled program
units into C or C++ main programs, you need only link in –lpgftnrtl.

10.14 Windows Calling Conventions
Aside from name-mangling considerations in C++, the calling convention (i.e., the symbol name
to which the subroutine or function name is mapped and the means by which arguments are
passed) for C/C++ is identical between most compilers on Windows and Linux variants. However,
Fortran calling conventions vary widely between Windows and Linux.

10.14.1 Windows Fortran Calling Conventions
Four styles of calling conventions are supported using the PGI Fortran compilers for Windows:
Default, C, STDCALL, and UNIX.

• Default − Default is the method used in the absence of compilation flags or directives to
alter the default.

• C or STDCALL − The C or STDCALL conventions are used if an appropriate compiler
directive is placed in a program unit containing the call. The C and STDCALL
conventions are typically used to call routines coded in C or assembly language that
depend on these conventions.

• UNIX − The UNIX convention is used in any Fortran program unit compiled using the
−Munix compilation flag. Table 10-3 outlines each of these calling conventions.

Table 10-3: Calling Conventions Supported by the PGI Fortran Compilers

Convention Default STDCALL C UNIX
Case of symbol name Upper Lower Lower Lower

Leading underscore Yes Yes Yes Yes

Trailing underscore No No No Yes

Argument byte count
added

Yes Yes No No

210 Chapter 10

Convention Default STDCALL C UNIX
Arguments passed by
reference

Yes No* No* Yes

Character argument byte
counts passed

After each
char
argument

No No End of
argument
list

Character strings
truncated to first
character and passed by
value

No Yes Yes No

varargs support No No Yes No

Caller cleans stack No No Yes Yes

* Except arrays, which are always passed by reference even in the STDCALL and C conventions

Note: While it is compatible with the Fortran implementations of Microsoft
and several other vendors, the C calling convention supported by the PGI
Fortran compilers for Windows is not strictly compatible with the C calling
convention used by most C/C++ compilers. In particular, symbol names
produced by PGI Fortran compilers using the C convention are all lower
case. The standard C convention is to preserve mixed-case symbol names.
You can cause any of the PGI Fortran compilers to preserve mixed-case
symbol names using the −Mupcase option, but be aware that this could
have other ramifications on your program.

10.14.2 Symbol Name Construction and Calling Example
This section presents an example of the rules outlined in table 10-3. In the pseudocode used below,
%addr refers to the address of a data item while %val refers to the value of that data item.
Subroutine and function names are converted into symbol names according to the rules outlined in
table 10-3. Consider the following subroutine call:

call work (‘ERR’, a, b, n)

where a is a double precision scalar, b is a real vector of size n, and n is an integer.

• Default − The symbol name for the subroutine is constructed by pre-pending an
underscore, converting to all upper case, and appending an @ sign followed by an integer
indicating the total number of bytes occupied by the argument list. Byte counts for
character arguments appear immediately following the corresponding argument in the

Inter-language Calling 211

argument list. The following is an example of the pseudo-code for the above call using
Default conventions:

call _WORK@20 (%addr(‘ERR’), 3, %addr(a), %addr(b), %addr(n))

• STDCALL − The symbol name for the subroutine is constructed by pre-pending an
underscore, converting to all lower case, and appending an @ sign followed by an integer
indicating the total number of bytes occupied by the argument list. Character strings are
truncated to the first character in the string, which is passed by value as the first byte in a
4-byte word. The following is an example of the pseudo-code for the above call using
STDCALL conventions:

call _work@20 (%val(‘E’), %val(a), %addr(b), %val(n))

Note that in this case there are still 20 bytes in the argument list. However, rather than 5
4-byte quantities as in the Default convention, there are 3 4-byte quantities and 1 8-byte
quantity (the double precision value of a).

• C − The symbol name for the subroutine is constructed by pre-pending an underscore and
converting to all lower case. Character strings are truncated to the first character in the
string, which is passed by value as the first byte in a 4-byte word. The following is an
example of the pseudo-code for the above call using C conventions:

call _work (%val(‘E’), %val (a), %addr(b), %val(n))

• UNIX − The symbol name for the subroutine is constructed by pre-pending an
underscore, converting to all lower case, and appending an underscore. Byte counts for
character strings appear in sequence following the last argument in the argument list. The
following is an example of the pseudo-code for the above call using UNIX conventions:

call _work_ (%addr(‘ERR’), %addr (a), %addr(b), %addr(n), 3)

10.14.3 Using the Default Calling Convention
Using the Default calling convention is straightforward. Use the default convention if no directives
are inserted to modify calling conventions and if the −Munix compilation flag is not used. See the
previous section for a complete description of the Default convention.

212 Chapter 10

10.14.4 Using the STDCALL Calling Convention
Using the STDCALL calling convention requires the insertion of a compiler directive into the
declarations section of any Fortran program unit which calls the STDCALL program unit. This
directive has no effect when the −Munix compilation flag is used, meaning you cannot mix UNIX-
style argument passing and STDCALL calling conventions within the same file. Syntax for the
directive is as follows:

!MS$ATTRIBUTES STDCALL :: work

Where work is the name of the subroutine to be called using STDCALL conventions. More than
one subroutine may be listed, separated by commas. See Section 10.14.2 Symbol Name
Construction and Calling Example for a complete description of the implementation of
STDCALL.

Note: The directive prefix !DEC$ is also supported, but requires a space
between the prefix and the directive keyword ATTRIBUTES. The ! must
begin the prefix when compiling using Fortran 90 freeform format. The
characters C or * can be used in place of ! in either form of the prefix when
compiling used fixed-form (F77-style) format. The directives are
completely case insensitive.

10.14.5 Using the C Calling Convention
Using the C calling convention requires the insertion of a compiler directive into the declarations
section of any Fortran program unit which calls the C program unit. This directive has no effect
when the −Munix compilation flag is used, meaning you cannot mix UNIX-style argument passing
and C calling conventions within the same file. Syntax for the directive is as follows:

!MS$ATTRIBUTES C :: work

Where work is the name of the subroutine to be called using C conventions. More than one
subroutine may be listed, separated by commas. See above for a complete description of the
implementation of the C calling convention.

Note: The directive prefix !DEC$ is also supported, but requires a space
between the prefix and the directive keyword ATTRIBUTES. The ! must
begin the prefix when compiling using Fortran 90 freeform format. The
characters C or * can be used in place of ! in either form of the prefix when
compiling used fixed-form (F77-style) format. The directives are
completely case insensitive.

Inter-language Calling 213

10.14.6 Using the UNIX Calling Convention

Using the UNIX calling convention is straightforward. Any program unit compiled using −Munix
compilation flag will use the UNIX convention.

C++ Name Mangling 215

Chapter 11
C++ Name Mangling
Name mangling transforms the names of entities so that the names include information on aspects
of the entity’s type and fully qualified name. This is necessary since the intermediate language into
which a program is translated contains fewer and simpler name spaces than there are in the C++
language. Specifically:

• Overloaded function names are not allowed in the intermediate language.

• Classes have their own scopes in C++, but not in the generated intermediate language. For
example, an entity x from inside a class must not conflict with an entity x from the file scope.

• External names in the object code form a completely flat name space. The names of entities
with external linkage must be projected onto that name space so that they do not conflict with
one another. A function f from a class A, for example, must not have the same external name
as a function f from class B.

• Some names are not names in the conventional sense of the word, they're not strings of
alphanumeric characters, for example operator=.

We can see that there are two problems here:

1. Generating external names that will not clash.

2. Generating alphanumeric names for entities with strange names in C++.

Name mangling solves these problems by generating external names that will not clash, and
alphanumeric names for entities with strange names in C++. It also solves the problem of
generating hidden names for some behind-the-scenes language support in such a way that they will
match up across separate compilations.

You will see mangled names if you view files that are translated by PGC++, and you do not use
tools that demangle the C++ names. Intermediate files that use mangled names include the
assembly and object files created by the pgCC command and the C-like file that can be viewed as
output from pgCC using the +i command-line option

The name mangling algorithm for the PGC++ compiler is the same as that for cfront, and also
matches the description in Section 7.2, Function Name Encoding, of The Annotated C++

216 Chapter 11

Reference Manual (except for some minor details). Refer to the ARM for a complete description
of name mangling.

11.1 Types of Mangling
The following entity names are mangled:

• Function names including non-member function names are mangled, to deal with overloading.
Names of functions with extern "C" linkage are not mangled.

• Mangled function names have the function name followed by __ followed by F followed by
the mangled description of the types of the parameters of the function. If the function is a
member function, the mangled form of the class name precedes the F. If the member function
is static, an S also precedes the F.

int f(float); // f__Ff
class A
 int f(float); // f__1AFf
 static int g(float); // g__1ASFf
;

• Special and operator function names, like constructors and operator=(). The encoding is
similar to that for normal functions, but a coded name is used instead of the routine name:

class A
 int operator+(float); // __pl__1Aff
 A(float); // __ct__1Aff
;
int operator+(A, float); // __pl__F1Af

• Static data member names. The mangled form is the member name followed by __ followed
by the mangled form of the class name:

class A
 static int i; // i__1A
;

• Names of variables generated for virtual function tables. These have names like
vtblmangled-class-name or vtblmangled-base-class-namemangled-class-
name.

C++ Name Mangling 217

• Names of variables generated to contain runtime type information. These have names like
Ttype-encoding and TIDtype-encoding.

11.2 Mangling Summary
This section lists some of the C++ entities that are mangled and provides some details on the
mangling algorithm. For more details, refer to The Annotated C++ Reference Manual.

11.2.1 Type Name Mangling
Using PGC++, each type has a corresponding mangled encoding. For example, a class type is
represented as the class name preceded by the number of characters in the class name, as in
5abcde for abcde. Simple types are encoded as lower-case letters, as in i for int or f for float.
Type modifiers and declarators are encoded as upper-case letters preceding the types they modify,
as in U for unsigned or P for pointer.

11.2.2 Nested Class Name Mangling
Nested class types are encoded as a Q followed by a digit indicating the depth of nesting, followed
by a _, followed by the mangled-form names of the class types in the fully-qualified name of the
class, from outermost to innermost:

class A
 class B // Q2_1A1B
 ;
;

11.2.3 Local Class Name Mangling
The name of the nested class itself is mangled to the form described above with a prefix __, which
serves to make the class name distinct from all user names. Local class names are encoded as L
followed by a number (which has no special meaning; it’s just an identifying number assigned to
the class) followed by __ followed by the mangled name of the class (this is not in the ARM, and
cfront encodes local class names slightly differently):

void f()
 class A // L1__1A}
 ;
;

This form is used when encoding the local class name as a type. It’s not necessary to mangle the
name of the local class itself unless it's also a nested class.

218 Chapter 11

11.2.4 Template Class Name Mangling
Template classes have mangled names that encode the arguments of the template:

template<class T1, class T2> class abc ;
abc<int, int> x;
abc__pt__3_ii

This describes two template arguments of type int with the total length of template argument list
string, including the underscore, and a fixed string, indicates parameterized type as well, the name
of the class template.

Run-time Environment 219

Appendix A
Run-time Environment
This appendix describes the programming model supported for compiler code generation,
including register conventions and calling conventions for X86 and X86-64 (AMD
Opteron/Athlon64 and EM64T) processor-based systems. Section A1 addresses these conventions
for X86 processors running Linux or Windows operating systems and Section A2 addresses these
conventions for X86-64 processors running Linux operating systems.

A1.1 Programming Model (X86)
This section defines compiler and assembly language conventions for the use of certain aspects of
the X86 processor. These standards must be followed to guarantee that compilers, application
programs, and operating systems written by different people and organizations will work together.
The conventions supported by the PGCC ANSI C compiler implement the application binary
interface (ABI) as defined in the System V Application Binary Interface: Intel Processor
Supplement and the System V Application Binary Interface, listed in the “Related Publications”
section in the Preface.

A1.2 Function Calling Sequence
This section describes the standard function calling sequence, including the stack frame, register
usage, and parameter passing.

Register Usage Conventions
Table A-1 defines the standard for register allocation. The 32-bit X86 Architecture (X86) provides
a number of registers. All the integer registers and all the floating-point registers are global to all
procedures in a running program.

Table A-1: Register Allocation

Type Name Purpose

General %eax integer return value
 %edx dividend register (for divide operations)
 %ecx count register (shift and string operations)
 %ebx local register variable

220 Appendix A

Type Name Purpose

 %ebp optional stack frame pointer
 %esi local register variable
 %edi local register variable
 %esp stack pointer
Floating-point %st(0) floating-point stack top, return value
 %st(1) floating-point next to stack top
 %st(...)
 %st(7) floating-point stack bottom

In addition to the registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. Table A-2 shows the stack frame organization.

Table A-2: Standard Stack Frame

Position Contents Frame
4n+8 (%ebp) argument word n previous

 8 (%ebp) argument word 0
 4 (%ebp) return address
 0 (%ebp) caller's %ebp current
 -4 (%ebp) n bytes of local
 -n (%ebp) variables and temps

Several key points concerning the stack frame:

• The stack is kept double word aligned

• Argument words are pushed onto the stack in reverse order (i.e., the rightmost argument in C
call syntax has the highest address) A dummy word may be pushed ahead of the rightmost
argument in order to preserve doubleword alignment. All incoming arguments appear on the
stack, residing in the stack frame of the caller.

• An argument’s size is increased, if necessary, to make it a multiple of words. This may require
tail padding, depending on the size of the argument.

All registers on an X86 system are global and thus visible to both a calling and a called function.
Registers %ebp, %ebx, %edi, %esi, and %esp are non-volatile across function calls. Therefore,

Run-time Environment 221

a function must preserve these registers’ values for its caller. Remaining registers are volatile
(scratch). If a calling function wants to preserve such a register value across a function call, it must
save its value explicitly.

Some registers have assigned roles in the standard calling sequence:

%esp The stack pointer holds the limit of the current stack frame, which is the
address of the stack’s bottom-most, valid word. At all times, the stack
pointer should point to a word-aligned area.

%ebp The frame pointer holds a base address for the current stack frame.
Consequently, a function has registers pointing to both ends of its frame.
Incoming arguments reside in the previous frame, referenced as positive
offsets from %ebp, while local variables reside in the current frame,
referenced as negative offsets from %ebp. A function must preserve this
register value for its caller.

%eax Integral and pointer return values appear in %eax. A function that returns a
structure or union value places the address of the result in %eax. Otherwise,
this is a scratch register.

%esi, %edi These local registers have no specified role in the standard calling
sequence. Functions must preserve their values for the caller.

%ecx, %edx Scratch registers have no specified role in the standard calling sequence.
Functions do not have to preserve their values for the caller.

%st(0) Floating-point return values appear on the top of the floating point register
stack; there is no difference in the representation of single or double-
precision values in floating point registers. If the function does not return a
floating point value, then the stack must be empty.

%st(1) - %st(7)
Floating point scratch registers have no specified role in the standard
calling sequence. These registers must be empty before entry and upon exit
from a function.

EFLAGS The flags register contains the system flags, such as the direction flag and
the carry flag. The direction flag must be set to the “forward” (i.e., zero)
direction before entry and upon exit from a function. Other user flags have
no specified role in the standard calling sequence and are not reserved.

222 Appendix A

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding
mode and exception masking. This register is initialized at process
initialization time and its value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual
restriction on their use of registers. Moreover, if a signal handling function returns, the process
resumes its original execution path with registers restored to their original values. Thus, programs
and compilers may freely use all registers without danger of signal handlers changing their values.

A1.3 Function Return Values
Functions Returning Scalars or No Value

• A function that returns an integral or pointer value places its result in register %eax.

• A function that returns a long long integer value places its result in the registers %edx
and %eax. The most significant word is placed in %edx and the least significant word is
placed in %eax.

• A floating-point return value appears on the top of the floating point stack. The caller
must then remove the value from the floating point stack, even if it does not use the
value. Failure of either side to meet its obligations leads to undefined program behavior.
The standard calling sequence does not include any method to detect such failures nor to
detect return value type mismatches. Therefore, the user must declare all functions
properly. There is no difference in the representation of single-, double- or extended-
precision values in floating-point registers.

• Functions that return no value (also called procedures or void functions) put no particular
value in any register.

• A call instruction pushes the address of the next instruction (the return address) onto the
stack. The return instruction pops the address off the stack and effectively continues
execution at the next instruction after the call instruction. A function that returns a scalar
or no value must preserve the caller's registers as described above. Additionally, the
called function must remove the return address from the stack, leaving the stack pointer
(%esp) with the value it had before the call instruction was executed.

Functions Returning Structures or Unions
If a function returns a structure or union, then the caller provides space for the return value and
places its address on the stack as argument word zero. In effect, this address becomes a hidden
first argument.

Run-time Environment 223

A function that returns a structure or union also sets %eax to the value of the original address of the
caller's area before it returns. Thus, when the caller receives control again, the address of the
returned object resides in register %eax and can be used to access the object. Both the calling and
the called functions must cooperate to pass the return value successfully:

• The calling function must supply space for the return value and pass its address in the stack
frame;

• The called function must use the address from the frame and copy the return value to the
object so supplied;

• The called function must remove this address from the stack before returning.

Failure of either side to meet its obligation leads to undefined program behavior. The standard
function calling sequence does not include any method to detect such failures nor to detect
structure and union type mismatches. Therefore, you must declare the function properly.

Table A-3 illustrates the stack contents when the function receives control, after the call
instruction, and when the calling function again receives control, after the ret instruction.

Table A-3: Stack Contents for Functions Returning struct/union

Position After Call After Return Position

4n+8 (%esp) argument word n argument word n 4n-4 (%esp)

8 (%esp) argument word 1 argument word 1 0 (%esp)

4 (%esp) value address undefined
0 (%esp) return address

The following sections of this appendix describe where arguments appear on the stack. The
examples are written as if the function prologue described above had been used.

A1.4 Argument Passing
Integral and Pointer Arguments

224 Appendix A

As mentioned, a function receives all its arguments through the stack; the last argument is pushed
first. In the standard calling sequence, the first argument is at offset 8(%ebp), the second argument
is at offset 12(%ebp), etc., as previously shown in Table A-3. Functions pass all integer-valued
arguments as words, expanding or padding signed or unsigned bytes and halfwords as needed.

Table A-4: Integral and Pointer Arguments

Call Argument Stack Address

g(1, 2, 3, (void *)0); 1 8 (%ebp)

 2 12 (%ebp)

 3 16 (%ebp)

 (void *) 0 20 (%ebp)

Floating-Point Arguments
The stack also holds floating-point arguments: single-precision values use one word and double-
precision use two. The example below uses only double-precision arguments.

Table A-5: Floating-point Arguments

Call Argument Stack Address

h(1.414, 1, 2.998e10); word 0, 1.414 8 (%ebp)

 word 1, 1.414 12 (%ebp)

 1 16 (%ebp)

 word 0 2.998e10 20 (%ebp)

 word 1, 2.998e10 24 (%ebp)

Structure and Union Arguments
Structures and unions can have byte, halfword, or word alignment, depending on the constituents.
An argument’s size is increased, if necessary, to make it a multiple of words. This may require tail
padding, depending on the size of the argument. Structure and union arguments are pushed onto
the stack in the same manner as integral arguments, described above. This provides call-by-value
semantics, letting the called function modify its arguments without affecting the calling function’s
object. In the example below, the argument, s, is a structure consisting of more than 2 words.

Run-time Environment 225

Table A-6: Structure and Union Arguments

Call Argument Stack Address

i(1,s); 1 8 (%ebp)

 word 0, s 12 (%ebp)

 word 1, s 16 (%ebp)

Implementing a Stack
In general, compilers and programmers must maintain a software stack. Register %esp is the stack
pointer. Register %esp is set by the operating system for the application when the program is
started. The stack must be a grow-down stack.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on
the stack at run-time (e.g. alloca). Some languages can also return values from a routine allocated
on stack space below the original top-of-stack pointer. Such a routine prevents the calling function
from using %esp-relative addressing to get at values on the stack. If the compiler does not call
routines that leave %esp in an altered state when they return, a frame pointer is not needed and is
not used if the compiler option –Mnoframe is specified.

Although not required, the stack should be kept aligned on 8-byte boundaries so that 8-byte locals
are favorably aligned with respect to performance. PGI's compilers allocate stack space for each
routine in multiples of 8 bytes.

Variable Length Parameter Lists
Parameter passing in registers can handle a variable number of parameters. The C language uses a
special method to access variable-count parameters. The stdarg.h and varargs.h files define
several functions to access these parameters. A C routine with variable parameters must use the
va_start macro to set up a data structure before the parameters can be used. The va_arg macro
must be used to access the successive parameters.

C Parameter Conversion
In C, for a called prototyped function, the parameter type in the called function must match the
argument type in the calling function. If the called function is not prototyped, the calling
convention uses the types of the arguments but promotes char or short to int, and unsigned
char or unsigned short to unsigned int and promotes float to double, unless you use the
--Msingle option. For more information on the –Msingle option, refer to Chapter 3. If the called
function is prototyped, the unused bits of a register containing a char or short parameter are
undefined and the called function must extend the sign of the unused bits when needed.

226 Appendix A

Calling Assembly Language Programs

/* File: testmain.c */

main()
{
 long l_para1 = 0x3f800000;
 float f_para2 = 1.0;
 double d_para3 = 0.5;

 float f_return;

 extern float sum_3 (long para1, float para2, double para3);

 f_return = sum_3(l_para1, f_para2, d_para3);
 printf("Parameter one, type long = %08x\n", l_para1);
 printf("Parameter two, type float = %f\n", f_para2);
 printf("Parameter three, type double = %g\n", d_para3);
 printf("The sum after conversion = %f\n", f_return);
}

File: sum_3.s
Computes (para1 + para2) + para3

 .text
 .align 4
 .long .EN1-sum_3+0xc8000000
 .align 16
 .globl sum_3
sum_3:
 pushl %ebp
 movl %esp,%ebp
 subl $8,%esp
..EN1:
 fildl 8(%ebp)
 fadds 12(%ebp)
 faddl 16(%ebp)
 fstps -4(%ebp)
 flds -4(%ebp)

Run-time Environment 227

 leave
 ret
 .type sum_3,@function
 .size sum_3,.-sum_3

Example A-1: C Program Calling an Assembly-language Routine

A2.1 Programming Model (X86-64 Linux)
This section defines compiler and assembly language conventions for the use of certain aspects of
the 64-bit processor (X86-64) running a Linux operating system. These standards must be
followed to guarantee that compilers, application programs, and operating systems written by
different people and organizations will work together. The conventions supported by the PGCC
ANSI C compiler implement the application binary interface (ABI) as defined in the System V
Application Binary Interface: AMD64 Architecture Processor Supplement and the System V
Application Binary Interface, listed in the “Related Publications” section in the Preface.

A2.2 Function Calling Sequence
This section describes the standard function calling sequence, including the stack frame, register
usage, and parameter passing.

Register Usage Conventions
Table A-7 defines the standard for register allocation. The 64-bit X86-64 Architecture provides a
number of registers. All the general purpose registers, XMM registers, and x87 registers are global
to all procedures in a running program.

Table A-7: Register Allocation

Type Name Purpose

General %rax 1st return register
 %rbx callee-saved; optional base pointer
 %rcx pass 4th argument to functions
 %rdx pass 3rd argument to functions; 2nd return

register
 %rsp stack pointer
 %rbp callee-saved; optional stack frame pointer
 %rsi pass 2nd argument to functions

228 Appendix A

Type Name Purpose

 %rdi pass 1st argument to functions
 %r8 pass 5th argument to functions
 %r9 pass 6th argument to functions
 %r10 temporary register; pass a function’s static

chain pointer
 %r11 temporary register
 %r12-r15 callee-saved registers
XMM %xmm0-%xmm1 pass and return floating point arguments
 %xmm2-%xmm7 pass floating point arguments
 %xmm8-%xmm15 temporary registers
x87 %st(0) temporary register; return long double

arguments
 %st(1) temporary register; return long double

arguments
 %st(2) -

%st(7)
temporary registers

In addition to the registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. Table A-8 shows the stack frame organization.

Table A-8: Standard Stack Frame

Position Contents Frame
8n+16 (%rbp) argument eightbyte n previous
 . . .
 16 (%rbp) argument eightbyte 0
 8 (%rbp) return address current
 0 (%rbp) caller's %rbp current
 -8 (%rbp) unspecified
 . . .
 0 (%rsp) variable size
 -128 (%rsp) red zone

Key points concerning the stack frame:

• The end of the input argument area is aligned on a 16-byte boundary.

Run-time Environment 229

• The 128-byte area beyond the location of %rsp is called the red zone and can be used for
temporary local data storage. This area is not modified by signal or interrupt handlers.

• A call instruction pushes the address of the next instruction (the return address) onto the
stack. The return instruction pops the address off the stack and effectively continues
execution at the next instruction after the call instruction. A function must preserve non-
volatile registers (described below). Additionally, the called function must remove the
return address from the stack, leaving the stack pointer (%rsp) with the value it had before
the call instruction was executed.

All registers on an X86-64 system are global and thus visible to both a calling and a called
function. Registers %rbx, %rsp, %rbp, %r12, %r13, %r14, and %r15 are non-volatile
across function calls. Therefore, a function must preserve these registers’ values for its caller.
Remaining registers are volatile (scratch). If a calling function wants to preserve such a register
value across a function call, it must save its value explicitly.

Registers are used extensively in the standard calling sequence. The first six integer and pointer
arguments are passed in these registers (listed in order): %rdi, %rsi, %rdx, %rcx, %r8, %r9.
The first eight floating point arguments are passed in the first eight XMM registers: %xmm0,
%xmm1, …, %xmm7. The registers %rax and %rdx are used to return integer and pointer values.
The registers %xmm0 and %xmm1 are used to return floating point values.

Additional registers with assigned roles in the standard calling sequence:

%rsp The stack pointer holds the limit of the current stack frame, which is the
address of the stack’s bottom-most, valid word. The stack must be 16-byte
aligned.

%rbp The frame pointer holds a base address for the current stack frame.
Consequently, a function has registers pointing to both ends of its frame.
Incoming arguments reside in the previous frame, referenced as positive
offsets from %rbp, while local variables reside in the current frame,
referenced as negative offsets from %rbp. A function must preserve this
register value for its caller.

RFLAGS The flags register contains the system flags, such as the direction flag and
the carry flag. The direction flag must be set to the “forward” (i.e., zero)
direction before entry and upon exit from a function. Other user flags have
no specified role in the standard calling sequence and are not preserved.

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding

230 Appendix A

mode and exception masking. This register is initialized at process
initialization time and its value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual
restriction on their use of registers. Moreover, if a signal handling function returns, the process
resumes its original execution path with registers restored to their original values. Thus, programs
and compilers may freely use all registers without danger of signal handlers changing their values.

A2.3 Function Return Values
Functions Returning Scalars or No Value

• A function that returns an integral or pointer value places its result in the next available
register of the sequence %rax, %rdx.

• A function that returns a floating point value that fits in the XMM registers returns this
value in the next available XMM register of the sequence %xmm0, %xmm1.

• An X87 floating-point return value appears on the top of the floating point stack in
%st(0) as an 80-bit X87 number. If this X87 return value is a complex number, the real
part of the value is returned in %st(0) and the imaginary part in %st(1).

• A function that returns a value in memory also returns the address of this memory in
%rax.

• Functions that return no value (also called procedures or void functions) put no particular
value in any register.

Functions Returning Structures or Unions
A function can use either registers or memory to return a structure or union. The size and type of
the structure or union determine how it is returned. If a structure or union is larger than 16 bytes, it
is returned in memory allocated by the caller.

To determine whether a 16-byte or smaller structure or union can be returned in one or more return
registers, examine the first eight bytes of the structure or union. The type or types of the structure
or union’s fields making up these eight bytes determine how these eight bytes will be returned. If
the eight bytes contain at least one integral type, the eight bytes will be returned in %rax even if
non-integral types are also present in the eight bytes. If the eight bytes only contain floating point
types, these eight bytes will be returned in %xmm0.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or
types of the fields making up the second eight bytes of the structure or union. If these eight bytes
contain at least one integral type, these eight bytes will be returned in %rdx even if non-integral

Run-time Environment 231

types are also present in the eight bytes. If the eight bytes only contain floating point types, these
eight bytes will be returned in %xmm1.

If a structure or union is returned in memory, the caller provides the space for the return value and
passes its address to the function as a “hidden” first argument in %rdi. This address will also be
returned in %rax.

A2.4 Argument Passing
Integral and Pointer Arguments
Integral and pointer arguments are passed to a function using the next available register of the
sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9. After this list of registers has been exhausted,
all remaining integral and pointer arguments are passed to the function via the stack.

Floating-Point Arguments
Float and double arguments are passed to a function using the next available XMM register taken
in the order from %xmm0 to %xmm7. After this list of registers has been exhausted, all remaining
float and double arguments are passed to the function via the stack.

Structure and Union Arguments
Structure and union arguments can be passed to a function in either registers or on the stack. The
size and type of the structure or union determine how it is passed. If a structure or union is larger
than 16 bytes, it is passed to the function in memory.

To determine whether a 16-byte or smaller structure or union can be passed to a function in one or
two registers, examine the first eight bytes of the structure or union. The type or types of the
structure or union’s fields making up these eight bytes determine how these eight bytes will be
passed. If the eight bytes contain at least one integral type, the eight bytes will be passed in the
first available general purpose register of the sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9
even if non-integral types are also present in the eight bytes. If the eight bytes only contain floating
point types, these eight bytes will be passed in the first available XMM register of the sequence
from %xmm0 to %xmm7.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or
types of the fields making up the second eight bytes of the structure or union. If the eight bytes
contain at least one integral type, the eight bytes will be passed in the next available general
purpose register of the sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9 even if non-integral
types are also present in the eight bytes. If these eight bytes only contain floating point types, these
eight bytes will be passed in the next available XMM register of the sequence from %xmm0 to
%xmm7.

If the first or second eight bytes of the structure or union cannot be passed in a register for some
reason, the entire structure or union must be passed in memory.

232 Appendix A

Passing Arguments on the Stack
If there are arguments left after every argument register has been allocated, the remaining
arguments are passed to the function on the stack. The unassigned arguments are pushed on the
stack in reverse order, with the last argument pushed first.

Table A-9 shows the register allocation and stack frame offsets for the function declaration and
call shown in Example A-2. Both table and example are adapted from System V Application
Binary Interface: AMD64 Architecture Processor Supplement.

typedef struct {
 int a, b;
 double d;
} structparm;
structparm s;
int e,f,g,h,i,j,k;
float flt;
double m,n;

extern void func (int e, int f, structparm s, int g, int h,
 float flt, double m, double n, int i, int j,
 int k);

func (e, f, s, g, h, flt, m, n, i, j, k);

Example A-2: Parameter Passing

Table A-9: Register Allocation for Example A-2

General Purpose Registers Floating Point Registers Stack Frame Offset

%rdi: e %xmm0: s.d 0: j

%rsi: f %xmm1: flt 8: k

%rdx: s.a,s.b %xmm2: m

%rcx: g %xmm3: n
%r8: h
%r9: i

Implementing a Stack

Run-time Environment 233

In general, compilers and programmers must maintain a software stack. The stack pointer, register
%rsp, is set by the operating system for the application when the program is started. The stack
must grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on
the stack at run-time (e.g. alloca). Some languages can also return values from a routine allocated
on stack space below the original top-of-stack pointer. Such a routine prevents the calling function
from using %rsp-relative addressing for values on the stack. If the compiler does not call routines
that leave %rsp in an altered state when they return, a frame pointer is not needed and may not be
used if the compiler option –Mnoframe is specified.

The stack must be kept aligned on 16-byte boundaries.

Variable Length Parameter Lists
Parameter passing in registers can handle a variable number of parameters. The C language uses a
special method to access variable-count parameters. The stdarg.h and varargs.h files define
several functions to access these parameters. A C routine with variable parameters must use the
va_start macro to set up a data structure before the parameters can be used. The va_arg macro
must be used to access the successive parameters.

For calls that use varargs or stdargs, the register %rax acts as a hidden argument whose value is the
number of XMM registers used in the call.

C Parameter Conversion
In C, for a called prototyped function, the parameter type in the called function must match the
argument type in the calling function. If the called function is not prototyped, the calling
convention uses the types of the arguments but promotes char or short to int, and unsigned
char or unsigned short to unsigned int and promotes float to double, unless you use the
--Msingle option. For more information on the –Msingle option, refer to Chapter 3.

Calling Assembly Language Programs

/* File: testmain.c */

main()
{
 long l_para1 = 0x3f800000;
 float f_para2 = 1.0;
 double d_para3 = 0.5;

 float f_return;

 extern float sum_3 (long para1, float para2, double para3);

234 Appendix A

 f_return = sum_3(l_para1, f_para2, d_para3);
 printf("Parameter one, type long = %08x\n", l_para1);
 printf("Parameter two, type float = %f\n", f_para2);
 printf("Parameter three, type double = %g\n", d_para3);
 printf("The sum after conversion = %f\n", f_return);
}

File: sum_3.s
Computes (para1 + para2) + para3

 .text
 .align 16
 .globl sum_3
sum_3:
 pushq %rbp
 movq %rsp, %rbp
 cvtsi2ssq %rdi, %xmm2
 addss %xmm0, %xmm2
 cvtss2sd %xmm2, %xmm2
 addsd %xmm1, %xmm2
 cvtsd2ss %xmm2, %xmm2
 movaps %xmm2, %xmm0
 popq %rbp
 ret
 .type sum_3,@function
 .size sum_3,.-sum_3

Example A-3: C Program Calling an Assembly-language Routine

A2.5 Fortran Supplement
This document is the Fortran supplement to the ABI for X86-64 Linux. The register usage
conventions set forth in that document remain the same for Fortran.

Run-time Environment 235

A2.6 Fortran Fundamental Types

Table A-10: Fortran Fundamental Types

Fortran Type Size
(bytes)

Alignment
(bytes)

INTEGER 4 4

INTEGER*1 1 1

INTEGER*2 2 2

INTEGER*4 4 4

INTEGER*8 8 8

LOGICAL 4 4

LOGICAL*1 1 1

LOGICAL*2 2 2

LOGICAL*4 4 4

LOGICAL*8 8 8

BYTE 1 1

CHARACTER*n n 1

REAL 4 4

REAL*4 4 4

REAL*8 8 8

DOUBLE PRECISION 8 8

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 8

DOUBLE COMPLEX 16 8

A logical constant is one of:

 .TRUE.
 .FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and 0
respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1 and
.FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

236 Appendix A

A2.7 Naming Conventions
By default, all globally visible Fortran symbol names (subroutines, functions, common blocks) are
converted to lower-case. In addition, an underscore is appended to Fortran global names to
distinguish the Fortran name space from the C/C++ name space.

A2.8 Argument Passing and Return Conventions
Arguments are passed by reference (i.e. the address of the argument is passed, rather than the
argument itself). In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing the
length of the CHARACTER argument is also passed to the function. This length argument is a
four-byte integer passed by value, and is passed at the end of the parameter list following the other
formal arguments. A length argument is passed for each CHARACTER argument; the length
arguments are passed in the same order as their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the beginning
of its argument list. The first additional argument is the address of the area created by the caller for
the return value; the second additional argument is the length of the return value. If a Fortran
function is declared to return a character value of constant length, for example CHARACTER*4
FUNCTION CHF(), the second extra parameter representing the length of the return value must
still be supplied.

A Fortran complex function returns its value in memory. The caller provides space for the return
value and passes the address of this storage as if it were the first argument to the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The
alternate return function passes the appropriate return value back to the caller in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal procedures,
pointer arguments, assumed-shape arguments, functions returning arrays, and functions returning
derived types.

A2.9 Inter-language Calling
Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters
and return values match types. If a C/C++ function returns a value, call it from Fortran as a
function, otherwise, call it as a subroutine. If a Fortran function has type CHARACTER or
COMPLEX, call it from C/C++ as a void function. If a Fortran subroutine has alternate returns,
call it from C/C++ as a function returning int; the value of such a subroutine is the value of the

Run-time Environment 237

integer expression specified in the alternate RETURN statement. If a Fortran subroutine does not
contain alternate returns, call it from C/C++ as a void function.

The following table provides the C/C++ data type corresponding to each Fortran data type.

Table A-11: Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)

CHARACTER*n x char x[n] n
REAL x float x 4
REAL*4 x float x 4
REAL*8 x double x 8
DOUBLE PRECISION x double x 8
INTEGER x int x 4
INTEGER*1 x signed char x 1
INTEGER*2 x short x 2
INTEGER*4 x int x 4
INTEGER*8 x long x, or

long long x
8
8

LOGICAL x int x 4
LOGICAL*1 x char x 1
LOGICAL*2 x short x 2
LOGICAL*4 x int x 4
LOGICAL*8 x long x, or

long long x
8
8

 Table A-12: Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type C/C++ Type Size (bytes)

COMPLEX x struct
 {float r, I;} x;

8

COMPLEX*8 x struct
 {float r, I;} x;

8

COMPLEX*16 x struct 16

238 Appendix A

Fortran Type C/C++ Type Size (bytes)

 {double dr,di;} x;
DOUBLE COMPLEX x struct

 {double dr,di;} x;
16

Arrays
 C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++
arrays start at 0 and Fortran arrays start at 1. A Fortran array can be declared to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses
column-major order and C/C++ use row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows and columns, row
and column indexes can simply be reversed. Inter-language function mixing is not recommended
for arrays other than single dimensional arrays and square two-dimensional arrays.

Structures, Unions, Maps, and Derived Types
Fields within Fortran structures and derived types, and multiple map declarations within a Fortran
union, conform to the same alignment requirements used by C structures.

Common Blocks
A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore. For example, the Fortran common block:

 INTEGER I, J
 COMPLEX C
 DOUBLE COMPLEX CD
 DOUBLE PRECISION D
 COMMON /COM/ i, j, c, cd, d

is represented in C with the following equivalent:

 extern struct {
 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;

Run-time Environment 239

 double d;
 } com_;

and in C++ with the following equivalent:

 extern "C" struct {
 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
 } com_;

Note that the compiler-provided name of the BLANK COMMON block is implementation specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward as
calling other types of Fortran functions. Additional arguments must be passed to the Fortran
function by the C/C++ caller. A Fortran COMPLEX function returns its value in memory; the first
argument passed to the function must contain the address of the storage for this value. A Fortran
CHARACTER function adds two arguments to the beginning of its argument list. The following
example of calling a Fortran CHARACTER function from C/C++ illustrates these caller-provided
extra parameters:

 CHARACTER*(*) FUNCTION CHF(C1, I)
 CHARACTER*(*) C1
 INTEGER I
 END

 extern void chf_();
 char tmp[10];
 char c1[9];
 int i;
 chf_(tmp, 10, c1, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the length
of c1. Refer to Section 2.8, Argument Passing and Return Conventions, for additional information.

Messages 241

Appendix B
Messages
This appendix describes the various messages that the compiler produces. These messages include
the sign-on message and diagnostic messages for remarks, warnings, and errors. The compiler
always displays any error messages, along with the erroneous source line, on the screen. If you
specify the –Mlist option, the compiler places any error messages in the listing file. You can also
use the –v option to display more information about the compiler, assembler, and linker
invocations and about the host system. For more information on the –Mlist and –v options, refer to
Chapter 3, Command Line Options.

B.1 Diagnostic Messages
Diagnostic messages provide syntactic and semantic information about your source text. Syntactic
information includes information such as syntax errors. Semantic includes information includes
such as unreachable code.

You can specify that the compiler displays error messages at a certain level with the –Minform
option.

The compiler messages refer to a severity level, a message number, and the line number where the
error occurs.

The compiler can also display internal error messages on standard errors. If your compilation
produces any internal errors, contact you’re The Portland Group’s technical reporting service by
sending e-mail to trs@pgroup.com.

If you use the listing file option –Mlist, the compiler places diagnostic messages after the source
lines in the listing file, in the following format:

 PGFTN-etype-enum-message (filename: line)

Where:

etype is a character signifying the severity level

enum is the error number

message is the error message

242 Appendix B

filename is the source filename

line is the line number where the compiler detected an error.

B.2 Phase Invocation Messages
You can display compiler, assembler, and linker phase invocations by using the –v command line
option. For further information about this option, see Chapter 3, Command Line Options.

B.3 Fortran Compiler Error Messages
This section presents the error messages generated by the PGF77 and PGF95 compilers. The
compilers display error messages in the program listing and on standard output; and can also
display internal error messages on standard error.

B.3.1 Message Format

Each message is numbered. Each message also lists the line and column number where the error
occurs. A dollar sign ($) in a message represents information that is specific to each occurrence of
the message.

B.3.2 Message List
Error message severities:

 I - informative.

 W - warning.

 S - severe error.

 F - fatal error.

 V - variable.

V000 Internal compiler error. $ $

This message indicates an error in the compiler, rather than a user error – although it may be possi-
ble for a user error to cause an internal error. The severity may vary; if it is informative or
warning, correct object code was probably generated, but it is not safe to rely on this. Regardless
of the severity or cause, internal errors should be reported to trs@pgroup.com.

Messages 243

F001 Source input file name not specified

On the command line, source file name should be specified either before all the switches, or after
them.

F002 Unable to open source input file: $

Source file name misspelled, file not in current working directory, or file is read protected.

F003 Unable to open listing file

Probably, user does not have write permission for the current working directory.

F004 $ $

Generic message for file errors.

F005 Unable to open temporary file

Compiler uses directory "/usr/tmp" or "/tmp" in which to create temporary files. If neither of these
directories is available on the node on which the compiler is being used, this error will occur.

S006 Input file empty

Source input file does not contain any Fortran statements other than comments or compiler
directives.

F007 Subprogram too large to compile at this optimization level $

Internal compiler data structure overflow, working storage exhausted, or some other non-
recoverable problem related to the size of the subprogram. If this error occurs at opt 2, reducing
the opt level to 1 may work around the problem. Moving the subprogram being compiled to its
own source file may eliminate the problem. If this error occurs while compiling a subprogram of
fewer than 2000 statements it should be reported to the compiler maintenance group as a possible
compiler problem.

F008 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be reset on
the command line.

F009 Unable to open assembly file

Probably, user does not have write permission for the current working directory.

244 Appendix B

F010 File write error occurred $

Probably, file system is full.

S011 Unrecognized command line switch: $

Refer to PDS reference document for list of allowed compiler switches.

S012 Value required for command line switch: $

Certain switches require an immediately following value, such as "-opt 2".

S013 Unrecognized value specified for command line switch: $

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.

W015 Hexadecimal or octal constant truncated to fit data type

I016 Identifier, $, truncated to 31 chars

An identifier may be at most 31 characters in length; characters after the 31st are ignored.

S017 Unable to open include file: $

File is missing, read protected, or maximum include depth (10) exceeded. Remember that the file
name should be enclosed in quotes.

S018 Illegal label $ $

Used for label ’field’ errors or illegal values. E.g., in fixed source form, the label field (first five
characters) of the indicated line contains a non-numeric character.

S019 Illegally placed continuation line

A continuation line does not follow an initial line, or more than 99 continuation lines were
specified.

S020 Unrecognized compiler directive

Refer to user’s manual for list of allowed compiler directives.

S021 Label field of continuation line is not blank

The first five characters of a continuation line must be blank.

Messages 245

S022 Unexpected end of file - missing END statement

S023 Syntax error - unbalanced $

Unbalanced parentheses or brackets.

W024 CHARACTER or Hollerith constant truncated to fit data type

A character or hollerith constant was converted to a data type that was not large enough to contain
all of the characters in the constant. This type conversion occurs when the constant is used in an
arithmetic expression or is assigned to a non-character variable. The character or hollerith constant
is truncated on the right, that is, if 4 characters are needed then the first 4 are used and the
remaining characters are discarded.

W025 Illegal character ($) - ignored

The current line contains a character, possibly non-printing, which is not a legal Fortran character
(characters inside of character or Hollerith constants cannot cause this error). As a general rule, all
non-printing characters are treated as white space characters (blanks and tabs); no error message is
generated when this occurs. If for some reason, a non-printing character is not treated as a white
space character, its hex representation is printed in the form dd where each d is a hex digit.

S026 Unmatched quote

S027 Illegal integer constant: $

Integer constant is too large for 32 bit word.

S028 Illegal real or double precision constant: $

S029 Illegal $ constant: $

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits 0..9 and
letters A..F or a..f; any other character in a hexadecimal constant is illegal. An octal constant
consists of digits 0..7; any other digit or character in an octal constant is illegal. A binary constant
consists of digits 0 or 7; any other digit or character in a binary constant is illegal.

S030 Explicit shape must be specified for $

S031 Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that is a
member of the set of allowed values for this particular data type.

246 Appendix B

W032 Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax (e.g.
DIMENSION A(10)*4).

S033 Illegal use of constant $

A constant was used in an illegal context, such as on the left side of an assignment statement or as
the target of a data initialization statement.

S034 Syntax error at or near $

I035 Predefined intrinsic $ loses intrinsic property

An intrinsic name was used in a manner inconsistent with the language definition for that intrinsic.
The compiler, based on the context, will treat the name as a variable or an external function.

S036 Illegal implicit character range

First character must alphabetically precede second.

S037 Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and different data
types are specified for it.

S038 Symbol, $, has not been explicitly declared

The indicated identifier must be declared in a type statement; this is required when the IMPLICIT
NONE statement occurs in the subprogram.

W039 Symbol, $, appears illegally in a SAVE statement $

An identifier appearing in a SAVE statement must be a local variable or array.

S040 Illegal common variable $

Indicated identifier is a dummy variable, is already in a common block, or has previously been
defined to be something other than a variable or array.

W041 Illegal use of dummy argument $

This error can occur in several situations. It can occur if dummy arguments were specified on a
PROGRAM statement. It can also occur if a dummy argument name occurs in a DATA,
COMMON, SAVE, or EQUIVALENCE statement. A program statement must have an empty
argument list.

Messages 247

S042 $ is a duplicate dummy argument

S043 Illegal attempt to redefine $ $

An attempt was made to define a symbol in a manner inconsistent with an earlier definition of the
same symbol. This can happen for a number of reasons. The message attempts to indicate the
situation that occurred.

intrinsic - An attempt was made to redefine an intrinsic function. A symbol that represents an
intrinsic function may be redefined if that symbol has not been previously verified to be an
intrinsic function. For example, the intrinsic sin can be defined to be an integer array. If a symbol
is verified to be an intrinsic function via the INTRINSIC statement or via an intrinsic function
reference then it must be referred to as an intrinsic function for the remainder of the program unit.

symbol - An attempt was made to redefine a symbol that was previously defined. An example of
this is to declare a symbol to be a PARAMETER which was previously declared to be a
subprogram argument.

S044 Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a
symbol as an ENTRY when that symbol was previously declared as an ENTRY.

S045 Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsistent with the data type of the current
function. For example, the function returns type character and an entry point returns type complex.

S046 Data type length specifier in wrong position

The CHARACTER data type specifier has a different position for the length specifier from the
other data types. Suppose, we want to declare arrays ARRAYA and ARRAYB to have 8 elements
each having an element length of 4 bytes. The difference is that ARRAYA is character and
ARRAYB is integer. The declarations would be CHARACTER ARRAYA(8)*4 and INTEGER
ARRAYB*4(8).

S047 More than seven dimensions specified for array

S048 Illegal use of ’*’ in declaration of array $

An asterisk may be used only as the upper bound of the last dimension.

S049 Illegal use of ’*’ in non-subroutine subprogram

248 Appendix B

The alternate return specifier ’*’ is legal only in the subroutine statement. Programs, functions,
and block data are not allowed to have alternate return specifiers.

S050 Assumed size array, $, is not a dummy argument

S051 Unrecognized built-in % function

The allowable built-in functions are %VAL, %REF, %LOC, and %FILL. One was encountered
that did not match one of these allowed forms.

S052 Illegal argument to %VAL or %LOC

S053 %REF or %VAL not legal in this context

The built-in functions %REF and %VAL can only be used as actual parameters in procedure calls.

W054 Implicit character $ used in a previous implicit statement

An implicit character has been given an implied data type more than once. The implied data type
for the implicit character is changed anyway.

W055 Multiple implicit none statements

The IMPLICIT NONE statement can occur only once in a subprogram.

W056 Implicit type declaration

The -dclchk switch and an implicit declaration following an IMPLICIT NONE statement will
produce a warning message for IMPLICIT statements.

S057 Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.

S058 Equivalenced variables $ and $ not in same common block

A common block variable must not be equivalenced with a variable in another common block.

S059 Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.

S060 Illegal equivalence of structure variable, $

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.

Messages 249

S061 Equivalence of $ and $ extends common block backwards

W062 Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an alignment not
optimal for variables of its data type. This can occur when INTEGER and CHARACTER data are
equivalenced, for instance.

I063 Gap in common block $ before $

S064 Illegal use of $ in DATA statement implied DO loop

The indicated variable is referenced where it is not an active implied DO index variable.

S065 Repeat factor less than zero

S066 Too few data constants in initialization statement

S067 Too many data constants in initialization statement

S068 Numeric initializer for CHARACTER $ out of range 0 through 255

A CHARACTER*1 variable or character array element can be initialized to an integer, octal, or
hexadecimal constant if that constant is in the range 0 through 255.

S069 Illegal implied DO expression

The only operations allowed within an implied DO expression are integer +, -, *, and /.

S070 Incorrect sequence of statements $

The statement order is incorrect. For instance, an IMPLICIT NONE statement must precede a
specification statement which in turn must precede an executable statement.

S071 Executable statements not allowed in block data

S072 Assignment operation illegal to $ $

The destination of an assignment operation must be a variable, array reference, or vector reference.
The assignment operation may be by way of an assignment statement, a data statement, or the
index variable of an implied DO-loop. The compiler has determined that the identifier used as the
destination, is not a storage location. The error message attempts to indicate the type of entity
used.

250 Appendix B

entry point - An assignment to an entry point that was not a function procedure was attempted.

external procedure - An assignment to an external procedure or a Fortran intrinsic name was
attempted. if the identifier is the name of an entry point that is not a function, an external
procedure...

S073 Intrinsic or predeclared, $, cannot be passed as an argument

S074 Illegal number or type of arguments to $ $

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function,
requiring a certain number of arguments of a fixed data type.

S075 Subscript, substring, or argument illegal in this context for
$

This can happen if you try to doubly index an array such as ra(2)(3). This also applies to substring
and function references.

S076 Subscripts specified for non-array variable $

S077 Subscripts omitted from array $

S078 Wrong number of subscripts specified for $

S079 Keyword form of argument illegal in this context for $$

S080 Subscript for array $ is out of bounds

S081 Illegal selector $ $

S082 Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.

S083 Vector expression used where scalar expression required

A vector expression was used in an illegal context. For example, iscalar = iarray, where a scalar is
assigned the value of an array. Also, character and record references are not vectorizable.

S084 Illegal use of symbol $ $

This message is used for many different errors.

Messages 251

S085 Incorrect number of arguments to statement function $

S086 Dummy argument to statement function must be a variable

S087 Non-constant expression where constant expression required

S088 Recursive subroutine or function call of $

A function may not call itself.

S089 Illegal use of symbol, $, with character length = *

Symbols of type CHARACTER*(*) must be dummy variables and must not be used as statement
function dummy parameters and statement function names. Also, a dummy variable of type
CHARACTER*(*) cannot be used as a function.

S090 Hollerith constant more than 4 characters

In certain contexts, Hollerith constants may not be more than 4 characters long.

S091 Constant expression of wrong data type

S092 Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within I/O statements,
must not consist of a concatenation involving a passed length character variable.

W093 Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of some other
data type. The compiler generates code to convert the expression into the required type.

S094 Variable $ is of wrong data type $

The indicated variable is used in a context which requires a variable of some other data type.

S095 Expression has wrong data type

An expression of some data type appears in a context which requires an expression of some other
data type.

S096 Illegal complex comparison

The relations .LT., .GT., .GE., and .LE. are not allowed for complex values.

252 Appendix B

S097 Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the subprogram.

S098 Divide by zero

S099 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements, unformatted I/O
statements, and as parameters to subprograms. They may not appear, for example, in expressions.
Also, records with differing structure types may not be assigned to one another.

S100 Expression cannot be promoted to a vector

An expression was used that required a scalar quantity to be promoted to a vector illegally. For
example, the assignment of a character constant string to a character array. Records, too, cannot be
promoted to vectors.

S101 Vector operation not allowed on $

Record and character typed entities may only be referenced as scalar quantities.

S102 Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or double
precision scalar expression.

S103 Type conversion of subscript expression for $

The data type of a subscript expression must be integer. If it is not, it is converted.

S104 Illegal control structure $

This message is issued for a number of errors involving IF-THEN statements and DO loops. If the
line number specified is the last line (END statement) of the subprogram, the error is probably an
unterminated DO loop or IF-THEN statement.

S105 Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN statement.

S106 DO index variable must be a scalar variable

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a
function name, a structure name, etc.

Messages 253

S107 Illegal assigned goto variable $

S108 Illegal variable, $, in NAMELIST group $

A NAMELIST group can only consist of arrays and scalars which are not dummy arguments and
pointer-based variables.

I109 Overflow in $ constant $, constant truncated at left

A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits produces an
overflow. The constant is truncated at left (e.g. ’1234567890abcdef1’x will be
’234567890abcdef1’x).

I110 <reserved message number>

I111 Underflow of real or double precision constant

I112 Overflow of real or double precision constant

S113 Label $ is referenced but never defined

S114 Cannot initialize $

W115 Assignment to DO variable $ in loop

S116 Illegal use of pointer-based variable $ $

S117 Statement not allowed within a $ definition

The statement may not appear in a STRUCTURE or derived type definition.

S118 Statement not allowed in DO, IF, or WHERE block

I119 Redundant specification for $

Data type of indicated symbol specified more than once.

I120 Label $ is defined but never referenced

I121 Operation requires logical or integer data types

254 Appendix B

An operation in an expression was attempted on data having a data type incompatible with the
operation. For example, a logical expression can consist of only logical elements of type integer or
logical. Real data would be invalid.

I122 Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER statement
has been truncated to fit the declared size of the corresponding identifier.

W123 Hollerith length specification too big, reduced

The length specifier field of a hollerith constant specified more characters than were present in the
character field of the hollerith constant. The length specifier was reduced to agree with the number
of characters present.

S124 Relational expression mixes character with numeric data

A relational expression is used to compare two arithmetic expressions or two character
expressions. A character expression cannot be compared to an arithmetic expression.

I125 Dummy procedure $ not declared EXTERNAL

A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram
name in a CALL statement, or is called as a function, and is therefore assumed to be a dummy
procedure. This message can result from a failure to declare a dummy array.

I126 Name $ is not an intrinsic function

I127 Optimization level for $ changed to opt 1 $

W128 Integer constant truncated to fit data type: $

An integer constant will be truncated when assigned to data types smaller than 32-bits, such as a
BYTE.

I129 Floating point overflow. Check constants and constant
expressions

I130 Floating point underflow. Check constants and constant
expressions

I131 Integer overflow. Check floating point expressions cast to
integer

Messages 255

I132 Floating pt. invalid oprnd. Check constants and constant
expressions

I133 Divide by 0.0. Check constants and constant expressions

S134 Illegal attribute $ $

W135 Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.

W136 Field-namelist not allowed

The field-namelist field of the STRUCTURE statement is disallowed on the outermost structure.

W137 Field-namelist is required in nested structures

W138 Multiply defined STRUCTURE member name $

A member name was used more than once within a structure.

W139 Structure $ in RECORD statement not defined

A RECORD statement contains a reference to a STRUCTURE that has not yet been defined.

S140 Variable $ is not a RECORD

S141 RECORD required on left of $

S142 $ is not a member of this RECORD

S143 $ requires initializer

W144 NEED ERROR MESSAGE $ $

This is used as a temporary message for compiler development.

W145 %FILL only valid within STRUCTURE block

The %FILL special name was used outside of a STRUCTURE multiline statement. It is only valid
when used within a STRUCTURE multiline statement even though it is ignored.

S146 Expression must be character type

256 Appendix B

S147 Character expression not allowed in this context

S148 Reference to $ required

An aggregate reference to a record was expected during statement compilation but another data
type was found instead.

S149 Record where arithmetic value required

An aggregate record reference was encountered when an arithmetic expression was expected.

S150 Structure, Record, derived type, or member $ not allowed in
this context

A structure, record, or member reference was found in a context which is not supported. For
example, the use of structures, records, or members within a data statement is disallowed.

S151 Empty TYPE, STRUCTURE, UNION, or MAP

TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION MAP -
ENDMAP declaration contains no members.

S152 All dimension specifiers must be ’:’

S153 Array objects are not conformable $

S154 DISTRIBUTE target, $, must be a processor

S155 $ $

S156 Number of colons and triplets must be equal in ALIGN $ with $

S157 Illegal subscript use of ALIGN dummy $ - $

S158 Alternate return not specified in SUBROUTINE or ENTRY

An alternate return can only be used if alternate return specifiers appeared in the SUBROUTINE
or ENTRY statements.

S159 Alternate return illegal in FUNCTION subprogram

An alternate return cannot be used in a FUNCTION.

S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top

Messages 257

S161 Vector subscript must be rank-one array

W162 Not equal test of loop control variable $ replaced with < or >
test.

S163 <reserved message number>

S164 Overlapping data initializations of $

An attempt was made to data initialize a variable or array element already initialized.

S165 $ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is applicable only
when an assembly file is the output of the compiler.

S166 $ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is applicable
only when an assembly file is the output of the compiler.

I167 Inconsistent size of common block $

A common block occurs in more than one subprogram of a source file and its size is not identical.
The maximum size is chosen. The message is applicable only when an assembly file is the output
of the compiler.

S168 Incompatible size of common block $

A common block occurs in more than one subprogram of a source file and is initialized in one
subprogram. Its initialized size was found to be less than its size in the other subprogram(s). The
message is applicable only when an assembly file is the output of the compiler.

W169 Multiple data initializations of common block $

A common block is initialized in more than one subprogram of a source file. Only the first set of
initializations apply. The message is applicable only when an assembly file is the output of the
compiler.

W170 F90 extension: $ $

Use of a nonstandard feature. A description of the feature is provided.

W171 F90 extension: nonstandard statement type $

258 Appendix B

W172 F90 extension: numeric initialization of CHARACTER $

A CHARACTER*1 variable or array element was initialized with a numeric value.

W173 F90 extension: nonstandard use of data type length specifier

W174 F90 extension: type declaration contains data initialization

W175 F90 extension: IMPLICIT range contains nonalpha characters

W176 F90 extension: nonstandard operator $

W177 F90 extension: nonstandard use of keyword argument $

W178 <reserved message number>

W179 F90 extension: use of structure field reference $

W180 F90 extension: nonstandard form of constant

W181 F90 extension: & alternate return

W182 F90 extension: mixed non-character and character elements in
COMMON $

W183 F90 extension: mixed non-character and character EQUIVALENCE ($,$)

W184 Mixed type elements (numeric and/or character types) in COMMON $

W185 Mixed numeric and/or character type EQUIVALENCE ($,$)

S186 Argument missing for formal argument $

S187 Too many arguments specified for $

S188 Argument number $ to $: type mismatch

S189 Argument number $ to $: association of scalar actual argument to
array dummy argument

S190 Argument number $ to $: non-conformable arrays

Messages 259

S191 Argument number $ to $ cannot be an assumed-size array

S192 Argument number $ to $ must be a label

W193 Argument number $ to $ does not match INTENT (OUT)

W194 INTENT(IN) argument cannot be defined - $

S195 Statement may not appear in an INTERFACE block $

S196 Deferred-shape specifiers are required for $

S197 Invalid qualifier or qualifier value (/$) in OPTIONS statement

An illegal qualifier was found or a value was specified for a qualifier which does not expect a
value. In either case, the qualifier for which the error occurred is indicated in the error message.

S198 $ $ in ALLOCATE/DEALLOCATE

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment requirement.

S200 Missing UNIT/FILE specifier

S201 Illegal I/O specifier - $

S202 Repeated I/O specifier - $

S203 FORMAT statement has no label

S204 $ $

Miscellaneous I/O error.

S205 Illegal specification of scale factor

The integer following + or - has been omitted, or P does not follow the integer value.

S206 Repeat count is zero

S207 Integer constant expected in edit descriptor

260 Appendix B

S208 Period expected in edit descriptor

S209 Illegal edit descriptor

S210 Exponent width not used in the Ew.dEe or Gw.dEe edit descriptors

S211 Internal I/O not allowed in this I/O statement

S212 Illegal NAMELIST I/O

Namelist I/O cannot be performed with internal, unformatted, formatted, and list-directed I/O.
Also, I/O lists must not be present.

S213 $ is not a NAMELIST group name

S214 Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/O item or
specifier

An assumed sized array was used as an item to be read or written or as an I/O specifier (i.e., FMT
= array-name). In these contexts the size of the array must be known.

S216 STRUCTURE/UNION cannot be used as an I/O item

S217 ENCODE/DECODE buffer must be a variable, array, or array element

S218 Statement labeled $ $

S219 <reserved message number>

S220 Redefining predefined macro $

S221 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this
context.

S222 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this
context.

Messages 261

S223 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).

S224 Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the maximum
allowed (currently 2048).

W225 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the number
of parameters in the macro’s definition.

F226 Can’t find include file $

The indicated include file could not be opened.

S227 Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum allowed
(currently 2048).

S228 EOF in comment

The end of a file was encountered while processing a comment.

S229 EOF in macro call to $

The end of a file was encountered while processing a call to the indicated macro.

S230 EOF in string

The end of a file was encountered while processing a quoted string.

S231 Formal parameters too long for $

The total length of the parameters in the definition of the indicated macro exceeded the maximum
allowed (currently 2048).

S232 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).

S233 <reserved message number>

262 Appendix B

W234 Illegal directive name

The sequence of characters following a # sign was not an identifier.

W235 Illegal macro name

A macro name was not an identifier.

S236 Illegal number $

The indicated number contained a syntax error.

F237 Line too long

The input source line length exceeded the maximum allowed (currently 2048).

W238 Missing #endif

End of file was encountered before a required #endif directive was found.

W239 Missing argument list for $

A call of the indicated macro had no argument list.

S240 Number too long

The length of a number exceeded the maximum allowed (currently 2048).

W241 Redefinition of symbol $

The indicated macro name was redefined.

I242 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.

F243 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

S244 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.

W245 Syntax error in #define, missing blank after name or arglist

There was no space or tab between a macro name or argument list and the macro’s definition.

Messages 263

S246 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.

S247 Syntax error in #include

The #include directive was not correctly formed.

W248 Syntax error in #line

A #line directive was not correctly formed.

W249 Syntax error in #module

A #module directive was not correctly formed.

W250 Syntax error in #undef

A #undef directive was not correctly formed.

W251 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.

W252 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.

S253 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently
31).

S254 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed
(currently 31).

F255 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be
recursive.

W256 Undefined directive $

The identifier following a # was not a directive name.

264 Appendix B

S257 EOF in #include directive

End of file was encountered while processing a #include directive.

S258 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.

S259 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.

S260 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.

S261 Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).

S262 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

S263 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

I264 Possible nested comment

The characters /* were found within a comment.

S265 <reserved message number>

S266 <reserved message number>

S267 <reserved message number>

W268 Cannot inline subprogram; common block mismatch

W269 Cannot inline subprogram; argument type mismatch

This message may be Severe if have gone too far to undo inlining process.

F270 Missing -exlib option

Messages 265

W271 Can’t inline $ - wrong number of arguments

I272 Argument of inlined function not used

S273 Inline library not specified on command line (-inlib switch)

F274 Unable to access file $/TOC

S275 Unable to open file $ while extracting or inlining

F276 Assignment to constant actual parameter in inlined subprogram

I277 Inlining of function $ may result in recursion

S278 <reserved message number>

W279 Possible use of $ before definition in $

The optimizer has detected the possibility that a variable is used before it has been assigned a
value. The names of the variable and the function in which the use occurred are listed. The line
number, if specified, is the line number of the basic block containing the use of the variable.

W280 Syntax error in directive $

messages 280-300 rsvd for directive handling

W281 Directive ignored - $ $

S300 Too few data constants in initialization of derived type $

S301 $ must be TEMPLATE or PROCESSOR

S302 Unmatched END$ statement

S303 END statement for $ required in an interface block

S304 EXIT/CYCLE statement must appear in a DO/DOWHILE loop$$

S305 $ cannot be named, $

S306 $ names more than one construct

266 Appendix B

S307 $ must have the construct name $

S308 DO may not terminate at an EXIT, CYCLE, RETURN, STOP, GOTO, or
arithmetic IF

S309 Incorrect name, $, specified in END statement

S310 $ $

Generic message for MODULE errors.

W311 Non-replicated mapping for $ array, $, ignored

W312 Array $ should be declared SEQUENCE

W313 Subprogram $ called within INDEPENDENT loop not PURE

E314 IPA: actual argument $ is a label, but dummy argument $ is not an
asterisk

The call passes a label to the subprogram; the corresponding dummy argument in the subprogram
should be an asterisk to declare this as the alternate return.

I315 IPA: routine $, $ constant dummy arguments

This many dummy arguments are being replaced by constants due to interprocedural analysis.

I316 IPA: routine $, $ INTENT(IN) dummy arguments

This many dummy arguments are being marked as INTENT(IN) due to interprocedural analysis.

I317 IPA: routine $, $ array alignments propagated

This many array alignments were propagated by interprocedural analysis.

I318 IPA: routine $, $ distribution formats propagated

This many array distribution formats were propagated by interprocedural analysis.

I319 IPA: routine $, $ distribution targets propagated

This many array distribution targets were propagated by interprocedural analysis.

I320 IPA: routine $, $ common blocks optimized

Messages 267

This many mapped common blocks were optimized by interprocedural analysis.

I321 IPA: routine $, $ common blocks not optimized

This many mapped common blocks were not optimized by interprocedural analysis, either because
they were declared differently in different routines, or they did not appear in the main program.

I322 IPA: analyzing main program $

Interprocedural analysis is building the call graph and propagating information with the named
main program.

I323 IPA: collecting information for $

Interprocedural analysis is saving information for the current subprogram for subsequent analysis
and propagation.

W324 IPA file $ appears to be out of date

W325 IPA file $ is for wrong subprogram: $

W326 Unable to open file $ to propagate IPA information to $

I327 IPA: $ subprograms analyzed

I328 IPA: $ dummy arguments replaced by constants

I329 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)

I330 IPA: $ dummy arguments changed to INTENT(IN)

I331 IPA: $ inherited array alignments replaced

I332 IPA: $ transcriptive distribution formats replaced

I333 IPA: $ transcriptive distribution targets replaced

I334 IPA: $ descriptive/prescriptive array alignments verified

I335 IPA: $ descriptive/prescriptive distribution formats verified

I336 IPA: $ descriptive/prescriptive distribution targets verified

268 Appendix B

I337 IPA: $ common blocks optimized

I338 IPA: $ common blocks not optimized

S339 Bad IPA contents file: $

S340 Bad IPA file format: $

S341 Unable to create file $ while analyzing IPA information

S342 Unable to open file $ while analyzing IPA information

S343 Unable to open IPA contents file $

S344 Unable to create file $ while collecting IPA information

F345 Internal error in $: table overflow

Analysis failed due to a table overflowing its maximum size.

W346 Subprogram $ appears twice

The subprogram appears twice in the same source file; IPA will ignore the first appearance.

F347 Missing -ipalib option

Interprocedural analysis, enabled with the -ipacollect, -ipaanalyze, or -ipapropagate options,
requires the -ipalib option to specify the library directory.

W348 Common /$/ $ has different distribution target

The array was declared in a common block with a different distribution target in another
subprogram.

W349 Common /$/ $ has different distribution format

The array was declared in a common block with a different distribution format in another
subprogram.

W350 Common /$/ $ has different alignment

The array was declared in a common block with a different alignment in another subprogram.

W351 Wrong number of arguments passed to $

Messages 269

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call.

W352 Wrong number of arguments passed to $ when bound to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call to the EXTERNAL name given.

W353 Subprogram $ is missing

A call to a subroutine or function with this name appears, but it could not be found or analyzed.

I354 Subprogram $ is not called

No calls to the given subroutine or function appear anywhere in the program.

W355 Missing argument in call to $

A nonoptional argument is missing in a call to the given subprogram.

I356 Array section analysis incomplete

Interprocedural analysis for array section arguments is incomplete; some information may not be
available for optimization.

I357 Expression analysis incomplete

Interprocedural analysis for expression arguments is incomplete; some information may not be
available for optimization.

W358 Dummy argument $ is EXTERNAL, but actual is not subprogram

The call statement passes a scalar or array to a dummy argument that is declared EXTERNAL.

W359 SUBROUTINE $ passed to FUNCTION dummy argument $

The call statement passes a subroutine name to a dummy argument that is used as a function.

W360 FUNCTION $ passed to FUNCTION dummy argument $ with different
result type

The call statement passes a function argument to a function dummy argument, but the dummy has
a different result type.

W361 FUNCTION $ passed to SUBROUTINE dummy argument $

270 Appendix B

The call statement passes a function name to a dummy argument that is used as a subroutine.

W362 Argument $ has a different type than dummy argument $

The type of the actual argument is different than the type of the corresponding dummy argument.

W363 Dummy argument $ is a POINTER but actual argument $ is not

The dummy argument is a pointer, so the actual argument must be also.

W364 Array or array expression passed to scalar dummy argument $

The actual argument is an array, but the dummy argument is a scalar variable.

W365 Scalar or scalar expression passed to array dummy argument $

The actual argument is a scalar variable, but the dummy argument is an array.

F366 Internal error: interprocedural analysis fails

An internal error occurred during interprocedural analysis; please report this to the compiler
maintenance group. If user errors were reported when collecting IPA information or during IPA
analysis, correcting them may avoid this error.

I367 Array $ bounds cannot be matched to formal argument

Passing a nonsequential array to a sequential dummy argument may require copying the array to
sequential storage. The most common cause is passing an ALLOCATABLE array or array
expression to a dummy argument that is declared with explicit bounds. Declaring the dummy
argument as assumed shape, with bounds (:,:,:), will remove this warning.

W368 Array-valued expression passed to scalar dummy argument $

The actual argument is an array-valued expression, but the dummy argument is a scalar variable.

W369 Dummy argument $ has different rank than actual argument

The actual argument is an array or array-valued expression with a different rank than the dummy
argument.

W370 Dummy argument $ has different shape than actual argument

The actual argument is an array or array-valued expression with a different shape than the dummy
argument; this may require copying the actual argument into sequential storage.

W371 Dummy argument $ is INTENT(IN) but may be modified

Messages 271

The dummy argument was declared as INTENT(IN), but analysis has found that the argument may
be modified; the INTENT(IN) declaration should be changed.

W372 Cannot propagate alignment from $ to $

The most common cause is when passing an array with an inherited alignment to a dummy
argument with non- inherited alignment.

I373 Cannot propagate distribution format from $ to $

The most common cause is when passing an array with a transcriptive distribution format to a
dummy argument with prescriptive or descriptive distribution format.

I374 Cannot propagate distribution target from $ to $

The most common cause is when passing an array with a transcriptive distribution target to a
dummy argument with prescriptive or descriptive distribution target.

I375 Distribution format mismatch between $ and $

Usually this arises when the actual and dummy arguments are distributed in different dimensions.

I376 Alignment stride mismatch between $ and $

This may arise when the actual argument has a different stride in its alignment to its template than
does the dummy argument.

I377 Alignment offset mismatch between $ and $

This may arise when the actual argument has a different offset in its alignment to its template than
does the dummy argument.

I378 Distribution target mismatch between $ and $

This may arise when the actual and dummy arguments have different distribution target sizes.

I379 Alignment of $ is too complex

The alignment specification of the array is too complex for interprocedural analysis to verify or
propagate; the program will work correctly, but without the benefit of IPA.

I380 Distribution format of $ is too complex

The distribution format specification of the array is too complex for interprocedural analysis to
verify or propagate; the program will work correctly, but without the benefit of IPA.

272 Appendix B

I381 Distribution target of $ is too complex

The distribution target specification of the array is too complex for interprocedural analysis to
verify or propagate; the program will work correctly, but without the benefit of IPA.

I382 IPA: $ subprograms analyzed

Interprocedural analysis succeeded in finding and analyzing this many subprograms in the whole
program.

I383 IPA: $ dummy arguments replaced by constants

Interprocedural analysis has found this many dummy arguments in the whole program that can be
replaced by constants.

I384 IPA: $ dummy arguments changed to INTENT(IN)

Interprocedural analysis has found this many dummy arguments in the whole program that are not
modified and can be declared as INTENT(IN).

W385 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)

Interprocedural analysis has found this many dummy arguments in the whole program that were
declared as INTENT(IN) but should be INTENT(INOUT).

I386 IPA: $ array alignments propagated

Interprocedural analysis has found this many array dummy arguments that could have the inherited
array alignment replaced by a descriptive alignment.

I387 IPA: $ array alignments verified

Interprocedural analysis has verified that the prescriptive or descriptive alignments of this many
array dummy arguments match the alignments of the actual argument.

I388 IPA: $ array distribution formats propagated

Interprocedural analysis has found this many array dummy arguments that could have the
transcriptive distribution format replaced by a descriptive format.

I389 IPA: $ array distribution formats verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution formats of this
many array dummy arguments match the formats of the actual argument.

I390 IPA: $ array distribution targets propagated

Messages 273

Interprocedural analysis has found this many array dummy arguments that could have the
transcriptive distribution target replaced by a descriptive target.

I391 IPA: $ array distribution targets verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution targets of this
many array dummy arguments match the targets of the actual argument.

I392 IPA: $ common blocks optimized

Interprocedural analysis has found this many common blocks that could be optimized.

I393 IPA: $ common blocks not optimized

Interprocedural analysis has found this many common blocks that could not be optimized, either
because the common block was not declared in the main program, or because it was declared
differently in different subprograms.

I394 IPA: $ replaced by constant value

The dummy argument was replaced by a constant as per interprocedural analysis.

I395 IPA: $ changed to INTENT(IN)

The dummy argument was changed to INTENT(IN) as per interprocedural analysis.

I396 IPA: array alignment propagated to $

The template alignment for the dummy argument was changed as per interprocedural analysis.

I397 IPA: distribution format propagated to $

The distribution format for the dummy argument was changed as per interprocedural analysis.

I398 IPA: distribution target propagated to $

The distribution target for the dummy argument was changed as per interprocedural analysis.

I399 IPA: common block $ not optimized

The given common block was not optimized by interprocedural analysis either because it was not
declared in the main program, or because it was declared differently in different subprograms.

E400 IPA: dummy argument $ is an asterisk, but actual argument is
not a label

274 Appendix B

The subprogram expects an alternate return label for this argument.

E401 Actual argument $ is a subprogram, but Dummy argument $ is not
declared EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a scalar
variable or array.

E402 Actual argument $ is illegal

E403 Actual argument $ and formal argument $ have different ranks

The actual and formal array arguments differ in rank, which is allowed only if both arrays are
declared with the HPF SEQUENCE attribute.

E404 Sequential array section of $ in argument $ is not contiguous

When passing an array section to a formal argument that has the HPF SEQUENCE attribute, the
actual argument must be a whole array with the HPF SEQUENCE attribute, or an array section of
such an array where the section is a contiguous sequence of elements.

E405 Array expression argument $ may not be passed to sequential dummy
argument $

When the dummy argument has the HPF SEQUENCE attribute, the actual argument must be a
whole array with the HPF SEQUENCE attribute or a contiguous array section of such an array,
unless an INTERFACE block is used.

E406 Actual argument $ and formal argument $ have different
character lengths

The actual and formal array character arguments have different character lengths, which is allowed
only if both character arrays are declared with the HPF SEQUENCE attribute, unless an
INTERFACE block is used.

W407 Argument $ has a different character length than dummy argument $

The character length of the actual argument is different than the length specified for the
corresponding dummy argument.

W408 Specified main program $ is not a PROGRAM

The main program specified on the command line is a subroutine, function, or block data
subprogram.

Messages 275

W409 More than one main program in IPA directory: $ and $

There is more than one main program analyzed in the IPA directory shown. The first one found is
used.

W410 No main program found; IPA analysis fails.

The main program must appear in the IPA directory for analysis to proceed.

W411 Formal argument $ is DYNAMIC but actual argument is an expression

W412 Formal argument $ is DYNAMIC but actual argument $ is not

I413 Formal argument $ has two reaching distributions and may be a
candidate for cloning

I414 $ and $ may be aliased and one of them is assigned

Interprocedural analysis has determined that two formal arguments because the same variable is
passed in both argument positions, or one formal argument and a global or COMMON variable
may be aliased, because the global or COMMON variable is passed as an actual argument. If
either alias is assigned in the subroutine, unexpected results may occur; this message alerts the
user that this situation is disallowed by the Fortran standard.

F415 IPA fails: incorrect IPA file

Interprocedural analysis saves its information in special IPA files in the specified IPA directory.
One of these files has been renamed or corrupted. This can arise when there are two files with the
same prefix, such as ’a.hpf’ and ’a.f90’.

E416 Argument $ has the SEQUENCE attribute, but the dummy parameter $
does not

When an actual argument is an array with the SEQUENCE attribute, the dummy parameter must
have the SEQUENCE attribute or an INTERFACE block must be used.

E417 Interface block for $ is a SUBROUTINE but should be a FUNCTION

E418 Interface block for $ is a FUNCTION but should be a SUBROUTINE

E419 Interface block for $ is a FUNCTION has wrong result type

W420 Earlier $ directive overrides $ directive

276 Appendix B

W421 $ directive can only appear in a function or subroutine

E422 Nonconstant DIM= argument is not supported

E423 Constant DIM= argument is out of range

E424 Equivalence using substring or vector triplets is not allowed

E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wrong number of arguments

E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wrong $

W431 Program is too large for Interprocedural Analysis to complete

W432 Illegal type conversion $

E433 Subprogram $ called within INDEPENDENT loop not LOCAL

W434 Incorrect home array specification ignored

S435 Array declared with zero size

An array was declared with a zero or negative dimension bound, as ’real a(-1)’, or an upper bound
less than the lower bound, as ’real a(4:2)’.

W436 Independent loop not parallelized$

W437 Type $ will be mapped to $

Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for
COMPLEX(16) or COMPLEX*32.

E438 $ $ not supported on this platform

Messages 277

This construct is not supported by the compiler for this target.

S439 An internal subprogram cannot be passed as argument - $

S440 Defined assignment statements may not appear in WHERE statement or
WHERE block

S441 $ may not appear in a FORALL block

E442 Adjustable-length character type not supported on this host - $ $

S443 EQUIVALENCE of derived types not supported on this host - $

S444 Derived type in EQUIVALENCE statement must have SEQUENCE attribute
- $

A variable or array with derived type appears in an EQUIVALENCE statement. The derived type
must have the SEQUENCE attribute, but does not.

E445 Array bounds must be integer $ $

The expressions in the array bounds must be integer.

S446 Argument number $ to $: rank mismatch

The number of dimensions in the array or array expression does not match the number of
dimensions in the dummy argument.

S447 Argument number $ to $ must be a subroutine or function name

S448 Argument number $ to $ must be a subroutine name

S449 Argument number $ to $ must be a function name

S450 Argument number $ to $: kind mismatch

S451 Arrays of derived type with a distributed member are not supported

S452 Assumed length character, $, is not a dummy argument

S453 Derived type variable with pointer member not allowed in IO - $ $

278 Appendix B

S454 Subprogram $ is not a module procedure

Only names of module procedures declared in this module or accessed through USE association
can appear in a MODULE PROCEDURE statement.

S455 A derived type array section cannot appear with a member array
section - $

A reference like A(:)%B(:), where ’A’ is a derived type array and ’B’ is a member array, is not
allowed; a section subscript may appear after ’A’ or after ’B’, but not both.

S456 Unimplemented for data type for MATMUL

S457 Illegal expression in initialization

S458 Argument to NULL() must be a pointer

S459 Target of NULL() assignment must be a pointer

S460 ELEMENTAL procedures cannot be RECURSIVE

S461 Dummy arguements of ELEMENATAL procedures must be scalar

S462 Arguments and return values of ELEMENATAL procedures cannot have
the POINTER attribute

S463 Arguments of ELEMENATAL procedures cannot be procedures

S464 An ELEMENTAL procedure cannot be passed as argument - $

B.4 Fortran Runtime Error Messages
This section presents the error messages generated by the runtime system. The runtime system
displays error messages on standard output.

B.4.1 Message Format
The messages are numbered but have no severity indicators because they all terminate program
execution.

Messages 279

B.4.2 Message List
Here are the runtime error messages:

201 illegal value for specifier

An improper specifier value has been passed to an I/O runtime routine. Example: within an OPEN
statement, form='unknown'.

202 conflicting specifiers

Conflicting specifiers have been passed to an I/O runtime routine. Example: within an OPEN statement,
form='unformatted', blank='null'.

203 record length must be specified

A recl specifier required for an I/O runtime routine has not been passed. Example: within an OPEN
statement, access='direct' has been passed, but the record length has not been specified (recl=specifier).

204 illegal use of a readonly file

Self explanatory. Check file and directory modes for readonly status.

205 'SCRATCH' and 'SAVE'/'KEEP' both specified

In an OPEN statement, a file disposition conflict has occurred. Example: within an OPEN statement,
status='scratch' and dispose='keep' have been passed.

206 attempt to open a named file as 'SCRATCH'

207 file is already connected to another unit

208 'NEW' specified for file that already exists

209 'OLD' specified for file that does not exist

210 dynamic memory allocation failed

Memory allocation operations occur only in conjunction with namelist I/O. The most probable cause of
fixed buffer overflow is exceeding the maximum number of simultaneously open file units.

280 Appendix B

211 invalid file name

212 invalid unit number

A file unit number less than or equal to zero has been specified.

215 formatted/unformatted file conflict

Formatted/unformatted file operation conflict.

217 attempt to read past end of file

219 attempt to read/write past end of record

For direct access, the record to be read/written exceeds the specified record length.

220 write after last internal record

221 syntax error in format string

A runtime encoded format contains a lexical or syntax error.

222 unbalanced parentheses in format string

223 illegal P or T edit descriptor - value missing

224 illegal Hollerith or character string in format

An unknown token type has been found in a format encoded at run-time.

225 lexical error -- unknown token type

226 unrecognized edit descriptor letter in format

An unexpected Fortran edit descriptor (FED) was found in a runtime format item.

228 end of file reached without finding group

229 end of file reached while processing group

Messages 281

230 scale factor out of range -128 to 127

Fortran P edit descriptor scale factor not within range of -128 to 127.

231 error on data conversion

233 too many constants to initialize group item

234 invalid edit descriptor

An invalid edit descriptor has been found in a format statement.

235 edit descriptor does not match item type

Data types specified by I/O list item and corresponding edit descriptor conflict.

236 formatted record longer than 2000 characters

237 quad precision type unsupported

238 tab value out of range

A tab value of less than one has been specified.

239 entity name is not member of group

242 illegal operation on direct access file

243 format parentheses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

246 infinite format scan for edit descriptor

248 illegal subscript or substring specification

249 error in format - illegal E, F, G or D descriptor

282 Appendix B

250 error in format - number missing after '.', '-', or '+'

251 illegal character in format string

252 operation attempted after end of file

253 attempt to read non-existent record (direct access)

254 illegal repeat count in format

C++ Dialect Supported 283

Appendix C
C++ Dialect Supported
The PGC++ compiler accepts the C++ language as defined by The Annotated C++ Reference
Manual (ARM) by Ellis and Stroustrup, Addison-Wesley, 1990, including templates, exceptions,
and support for the anachronisms described in section 18 of the ARM. This is the same language
defined by the language reference for ATT’s cfront version 3.0.1, with the addition of exceptions.
PGC++ optionally accepts a number of features erroneously accepted by cfront version 2.1. Using
the –b option, PGC++ accepts these features, which may never have been legal C++ but have
found their way into some user’s code.

Command-line options provide full support of many C++ variants, including strict standard
conformance. PGC++ provides command line options that enable the user to specify whether
anachronisms and/or cfront 2.1 compatibility features should be accepted. Refer to Section C.4 for
details on features that are not part of the ARM but are part of the ANSI C++ working draft
X3J16/WG21.

C.1 Anachronisms Accepted
The following anachronisms are accepted when anachronisms are enabled (when the +p option is
not used):

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized using default
initialization. This anachronism does not apply to static data members of template classes;
they must always be defined.

• The number of elements in an array may be specified in an array delete operation. The value
is ignored.

• A single operator++() and operator--() function can be used to overload both prefix
and postfix operations.

• The base class name may be omitted in a base class initializer if there is only one immediate
base class.

284 Appendix C

• Assignment to this in constructors and destructors is allowed. This is allowed only if
anachronisms are enabled and the assignment to this configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given object) can be cast to a
pointer to a function.

• A nested class name may be used as a non-nested class name provided no other class of that
name has been declared. This anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a different type. A
temporary is created, it is initialized from the (converted) initial value, and the reference is set
to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of the class type or a
derived class thereof. No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and may participate in function
overloading as though it was prototyped. Default argument promotion is not applied to
parameter types of such functions when the check for compatibility is done, so that the
following declares the overloading of two functions named f:

 int f(int);
 int f(x) char x; return x;

It will be noted that in C, this code is legal but has a different meaning: a tentative declaration of f
is followed by its definition.

• When --nonconst_ref_anachronism is enabled, a reference to a nonconst class can be
bound to a class rvalue of the same type or a derived type thereof.

 struct A {
 A(int);
 A operator=(A&);
 A operator+(const A&);
 };

 main () {
 A b(1);
 b = A(1) + A(2); // Allowed as anachronism
 }

C++ Dialect Supported 285

C.2 New Language Features Accepted
The following features not in the ARM but in the X3J16/WG21 Working paper are accepted:

• The dependent statement of an if, while, do-while, or for is considered to be a scope, and
the restriction on having such a dependent statement be a declaration is removed.

• The expression tested in an if, while, do-while, or for, as the first operand of a ''?''
operator, or as an operand of the "&&", "::", or "!" operators may have a pointer-to-member
type or a class type that can be converted to a pointer-to-member type in addition to the scalar
cases permitted by the ARM.

• Qualified names are allowed in elaborated type specifiers.

• Use of a global-scope qualifier in member references of the form x.::A::B
and p->::A::B.

• The precedence of the third operand of the ``?'' operator is changed.

• If control reaches the end of the main() routine, and main() has an integral return type, it is
treated as if a return 0; statement were executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed as errors.

• A functional-notation cast of the form A() can be used even if A is a class without a
(nontrivial) constructor. The temporary created gets the same default initialization to zero as a
static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when taking the address
of a function.

• Template friend declarations and definitions are permitted in class definitions and class
template definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions, such as conversion from T** to T const * const * are
allowed.

• Digraphs are recognized.

• Operator keywords (e.g., and, bitand, etc.) are recognized.

286 Appendix C

• Static data member declarations can be used to declare member constants.

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• RTTI (runtime type identification), including dynamic_cast and the typeid operator, are
implemented.

• Declarations in tested conditions (in if, switch, for, and while statements) are supported.

• Array new and delete are implemented.

• New-style casts (static_cast, reinterpret_cast, and const_cast) are implemented.

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on nonstatic data member declarations.

• Namespaces are implemented, including using declarations and directives. Access
declarations are broadened to match the corresponding using declarations.

• Explicit instantiation of templates is implemented.

• typename keyword is implemented.

• explicit is accepted to declare Non-converting constructors .

• The scope of a variable declared in a for-init-statement of a loop is the scope of the
loop, not the surrounding scope.

• Member templates are implemented.

• The new specialization syntax (using "template<>") is implemented.

• Cv-qualifiers are retained on rvalues (in particular, on function return values).

• The distinction between trivial and nontrivial constructors has been implemented, as has the
distinction between PODs and non-PODs with trivial constructors.

• The linkage specification is treated as part of the function type (affecting function overloading
and implicit conversions).

• extern inline functions are supported, and the default linkage for inline functions is
external.

• A typedef name may be used in an explicit destructor call.

• Placement delete is implemented.

C++ Dialect Supported 287

• An array allocated via a placement new can be deallocated via delete.

• Covariant return types on overriding virtual functions are supported.

• enum types are considered to be non-integral types.

• Partial specialization of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as independent functions,
not as “guiding declarations” that are instances of the template.

• It is possible to overload operators using functions that take enum types and no class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::PB and p->A::B are
supported.

• The notation :: template (and ->template, etc.) is supported.

C.3 The following language features are not accepted
The following feature of the ISO/IEC 14882:1998 C++ standard is not supported:

• Exported templates are not implemented

C.4 Extensions Accepted in Normal C++ Mode
The following extensions are accepted in all modes (except when strict ANSI violations are
diagnosed as errors, see the –A option):

• A friend declaration for a class may omit the class keyword:

 class A {
 friend B; // Should be "friend class B"
 };

• Constants of scalar type may be defined within classes:

 class A {
 const int size = 10;
 int a[size];
 };

288 Appendix C

• In the declaration of a class member, a qualified name may be used:

 struct A{
 int A::f(); // Should be int f();
 }

• The preprocessing symbol c_plusplus is defined in addition to the standard __cplusplus.

• An assignment operator declared in a derived class with a parameter type matching one of its
base classes is treated as a "default'' assignment operator --- that is, such a declaration blocks
the implicit generation of a copy assignment operator. (This is cfront behavior that is known
to be relied upon in at least one widely used library.) Here's an example:

 struct A { } ;
 struct B : public A {
 B& operator=(A&);
 };

 By default, as well as in cfront-compatibility mode, there will be no implicit declaration of
B::operator=(const B&), whereas in strict-ANSI mode B::operator=(A&) is not a
copy assignment operator and B::operator=(const B&) is implicitly declared.

• Implicit type conversion between a pointer to an extern “C” function and a pointer to an
extern “C++” function is permitted. Here’s an example:
 extern “C” void f(); // f’s type has extern “C” linkage

 void (*pf) () // pf points to an extern “C++” function

 = &f; // error unless implicit conv is allowed

This extension is allowed in environments where C and C++ functions share the same calling
conventions (though it is pointless unless
DEFAULT_C_AND_CPP_FUNTION_TYPES_ARE_DISTINCT is TRUE). When
DEFAULT_IMPL_CONV_BETWEEN_C_AND_CPP_FUNCTION_PTRS_ALLOWED is set, it is
enabled by default; it can also be enabled in cfront-compatibility mode or with command-line
option –implicit_extern_c_type_conversion. It is disabled in strict-ANSI mode.

C.5 cfront 2.1 Compatibility Mode
The following extensions are accepted in cfront 2.1 compatibility mode in addition to the
extensions listed in the following 2.1/3.0 section (i.e., these are things that were corrected in the
3.0 release of cfront):

C++ Dialect Supported 289

• The dependent statement of an if, while, do-while, or for is not considered to define a
scope. The dependent statement may not be a declaration. ny objects constructed within the
dependent statement are destroyed at exit from the dependent statement.

• Implicit conversion from integral types to enumeration types is allowed.

• A non-const member function may be called for a const object. A warning is issued.

• A const void * value may be implicitly converted to a void * value, e.g., when passed as
an argument.

• When, in determining the level of argument match for overloading, a reference parameter is
initialized from an argument that requires a non-class standard conversion, the conversion
counts as a user-defined conversion. (This is an outright bug, which unfortunately happens to
be exploited in the NIH class libraries.)

• When a builtin operator is considered alongside overloaded operators in overload resolution,
the match of an operand of a builtin type against the builtin type required by the builtin
operator is considered a standard conversion in all cases (e.g., even when the type is exactly
right without conversion).

• A reference to a non-const type may be initialized from a value that is a const-qualified
version of the same type, but only if the value is the result of selecting a member from a
const class object or a pointer to such an object.

• A cast to an array type is allowed; it is treated like a cast to a pointer to the array element type.
A warning is issued.

• When an array is selected from a class, the type qualifiers on the class object (if any) are not
preserved in the selected array. (In the normal mode, any type qualifiers on the object are
preserved in the element type of the resultant array.)

• An identifier in a function is allowed to have the same name as a parameter of the function. A
warning is issued.

• An expression of type void may be supplied on the return statement in a function with a void
return type. A warning is issued.

• cfront has a bug that causes a global identifier to be found when a member of a class or one of
its base classes should actually be found. This bug is not emulated in cfront compatibility
mode.

• A parameter of type "const void *'' is allowed on operator delete; it is treated as
equivalent to "void *".

290 Appendix C

• A period (".") may be used for qualification where "::" should be used. Only "::'' may be
used as a global qualifier. Except for the global qualifier, the two kinds of qualifier operators
may not be mixed in a given name (i.e., you may say A::B::C or A.B.C but not A::B.C or
A.B::C). A period may not be used in a vacuous destructor reference nor in a qualifier that
follows a template reference such as A<T>::B.

• cfront 2.1 does not correctly look up names in friend functions that are inside class definitions.
In this example function f should refer to the functions and variables (e.g., f1 and a1) from
the class declaration. Instead, the global definitions are used.

 int a1;
 int e1;
 void f1();
 class A {
 int a1;
 void f1();
 friend void f()
 {
 int i1 = a1; // cfront uses global a1
 f1(); // cfront uses global f1
 }
 };

 Only the innermost class scope is (incorrectly) skipped by cfront as illustrated in the following
example.

int a1;
int b1;
struct A {
 static int a1;
 class B {
 static int b1;
 friend void f()
 {
 int i1 = a1; // cfront uses A::a1
 int j1 = b1; // cfront uses global b1
 }
 };
};

• operator= may be declared as a nonmember function. (This is flagged as an anachronism by
cfront 2.1)

C++ Dialect Supported 291

• A type qualifier is allowed (but ignored) on the declaration of a constructor or destructor. For
example:

class A {
 A() const; // No error in cfront 2.1 mode
};

C.6 cfront 2.1/3.0 Compatibility Mode
The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatibility mode (i.e.,
these are features or problems that exist in both cfront 2.1 and 3.0):

• Type qualifiers on the this parameter may to be dropped in contexts such as this example:

 struct A {
 void f() const;

 };

 void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may be put into a pointer to
non-const, because a call using the pointer is permitted to modify the object and the function
pointed to will actually not modify the object. The opposite assignment would not be safe.

• Conversion operators specifying conversion to void are allowed.

• A nonstandard friend declaration may introduce a new type. A friend declaration that omits
the elaborated type specifier is allowed in default mode, but in cfront mode the declaration is
also allowed to introduce a new type name.

 struct A {
 friend B;
 };

• The third operator of the ? operator is a conditional expression instead of an assignment
expression as it is in the current X3J16/WG21 Working Paper.

• A reference to a pointer type may be initialized from a pointer value without use of a
temporary even when the reference pointer type has additional type qualifiers above those
present in the pointer value. For example,

 int *p;
 const int *&r = p; // No temporary used

292 Appendix C

• A reference may be initialized with a null.

Index 293

Index
Auto-parallelization 33

Basic block.. 19

Bounds checking....................................... 89

C/C++ Builtin Functions......................... 173

C/C++ Math Header File......................... 173

C/C++ Parallelization Pragmas

omp atomic.. 148

omp flush .. 149

omp parallel for................................... 146

omp parallel sections........................... 147

omp sections.. 146

omp threadprivate 149

C++ Name Mangling 215

C++ Standard Template Library 181

Cache Tiling

failed cache tiling 90

Command-line Options 9, 47

-# ... 53

-### ... 53

--[no]llalign ... 110

--[no_]alternative_tokens 106

--[no_]bool .. 107

--[no_]exceptions 109

--[no_]pch_messages 111

--[no_]using_std112

-A ..106

-b ... 106, 107

-b3 ...107

-byteswapio ...54

-c ...55

-C...54

--cfront_2.1 ...108

--cfront_3.0 ...108

--create_pch...108

-cyglibs..55

-D ..55

--diag_error ...109

--diag_remark......................................109

--diag_suppress109

--diag_warning109

--display_error_number.......................109

-dryrun...56

-E...57

-F ...57

-fast ...57, 58

-flags..58

-fpic ...58

-fPIC..58

294 Index

-g ... 59

-G .. 59

-g77libs ... 59

-help .. 60

-I.. 60

-i2, -i4 and -i8 61

-i8storage .. 61

-Kflag .. 62

-l.. 63

-L... 63

-M ... 110

-M<pgflag>... 64

-Manno.. 89

-Masmkeyword 78

-Mbackslash .. 76

-Mbounds.. 89

-Mbyteswapio 89

-Mcache_align 80

-Mchkfpstk.. 89

-Mchkptr ... 89

-Mchkstk ... 90

-mcmodel=medium............................... 92

-Mconcur... 80

-Mcray... 81

-MD... 110

-Mdaz.. 71

-Mdclchk... 76

-Mdefaultunit .. 76

-Mdepchk .. 82

-Mdlines .. 77

-Mdll ... 90

-Mdollar .. 77, 79

-Mdwarf1 .. 71

-Mdwarf2 .. 71

-Mextend ... 77

-Mextract... 75

-Mfcon .. 79

-Mfixed ... 77

-Mflushz.. 71

-Mfree ... 77

-Mfunc32... 71

-Mi4 .. 82

-Minfo ... 90

-Minform... 91

-Minline... 75

-Miomutex... 77

-Mipa... 82

-Mkeepasm.. 91

-Mlarge_arrays 71

-Mlfs.. 74

-Mlist... 91

-Mlre ... 84

-Mmakedll... 91

-Mneginfo ... 90

-Mnoasmkeyword 79

-Mnobackslash 76

Index 295

-Mnobounds .. 89

-Mnodaz .. 71

-Mnodclchk ... 76

-Mnodefaultunit 76

-Mnodepchk .. 82

-Mnodlines .. 77

-Mnoflushz.. 71

-Mnoframe .. 84

-Mnoi4 .. 85

-Mnoiomutex... 77

-Mnolarge_arrays 72

-Mnolist... 91

-Mnolre ... 84

-Mnomain.. 72

-Mnontemporal 72

-Mnoonetrip .. 77

-Mnoopenmp... 91

-Mnopgdllmain 91

-Mnoprefetch... 85

-Mnor8 .. 85

-Mnor8intrinsics.................................... 86

-Mnorecursive 72

-Mnoreentrant 73

-Mnoref_externals................................. 72

-Mnosave... 77

-Mnoscalarsse 86

-Mnosecond_underscore 73

-Mnosgimp.. 91

-Mnosignextend.....................................73

-Mnosingle ..79

-Mnosmart ...86

-Mnostartup...74

-Mnostddef ..74

-Mnostdlib...74

-Mnostride0...73

-Mnounixlogical....................................78

-Mnounroll ..87

-Mnoupcase...78

-Mnovect ...88

-Mnovintr ..88

-module ...93

-Monetrip ..77

-mp ..94

-Mpfi ...85

-Mpfo ..85

-Mprefetch...85

-Mpreprocess...92

-Mprof ...72

-Mr8 ..85

-Mr8intrinsics..86

-Mrecursive ...72

-Mreentrant..73

-Mref_externals72

-Msafe_lastval73

-Msafeptr ...86

-Msave...77

296 Index

-Mscalarsse ... 86

-Mschar ... 79

-Msecond_underscore 73

-Msignextend .. 73

-Msingle .. 79

-mslibs... 94

-Msmart... 86

-Mstandard .. 77

-Mstride0... 73

-msvcrt .. 94

-Muchar... 79

-Munix .. 73

-Munixlogical.. 77

-Munroll .. 86

-Mupcase... 78

-Mvarargs.. 73

-Mvect... 87

-o ... 96, 99

-O .. 95

--optk_allow_dollar_in_id_chars 110

-P... 110

-pc ... 97

--pch.. 111

--pch_dir ... 111

--preinclude... 111

-Q .. 99

-R .. 100

-r4 and -r8 ... 100

-rc .. 100

-S... 101

-shared... 101

-show... 101

-silent .. 102

syntax .. 8

-t .. 112

-time .. 102

-tp .. 102

-U .. 103

--use_pch... 111

-v ... 104

-V .. 104

-w .. 105

-W ... 105

Compilation driver 7

Compilers

Invoke at command level 8

PGC++ ... 4

PGCC ANSI C .. 4

PGF77... 4

PGF95... 4

PGHPF ... 4

cpp... 11

Data Types .. 185

bitfields ... 193

C/C++ aggregate alignment 192

C/C++ scalar data types 189

Index 297

C/C++ struct....................................... 191

C/C++ void... 194

C++ class and object layout 191

C++ classes .. 191

DEC structures 187

DEC Unions .. 187

F90 derived types 188

Fortran... 185

internal padding................................... 192

tail padding.. 192

Directives

Fortran... 9

optimization .. 155

Parallelization 119

scope ... 161

Environment variables 181

Environment Variables

FORTRAN_OPT 182

MP_BIND.. 182

MP_BLIST ... 182

MP_SPIN.. 182

MP_WARN.. 182

MPSTKZ 16, 136, 153, 182

NCPUS .. 183

NCPUS_MAX 183

NO_STOP_MESSAGE......................... 183

OMP_DYNAMIC 136, 153

OMP_NESTED............................. 136, 153

OMP_NUM_THREADS 136, 152

OMP_SCHEDULE136

PGI ...183

PGI_CONTINUE183

STATIC_RANDOM_SEED..................184

TMPDIR ..184

TZ..184

Filename Conventions...............................10

extensions..10

Input Files ...10

Output Files...11

Floating-point stack...................................97

Fortran

named common blocks........................199

Fortran directive summary156

Fortran Parallelization Directives

ATOMIC..................................... 132, 148

CRITICAL ... END CRITICAL..........123

DOACROSS129

FLUSH..133

PARALLEL DO..................................130

PARALLEL SECTIONS131

SECTIONS ... END SECTIONS.........130

THREADPRIVATE............................133

Function Inlining

inlining and makefiles116

298 Index

inlining examples 117

inlining restrictions 117

Inter-language Calling 195

%VAL... 200

arguments and return values 199

array indices.. 201

C calling C++...................................... 205

C calling Fortran 203

C++ calling C...................................... 204

C++ calling Fortran............................ 207

character case conventions.................. 197

character return values 200

compatible data types.......................... 197

Fortran calling C 202

Fortran calling C++............................ 206

underscores ... 197

IPA.. 38

building a program with IPA 40

building a program with IPA using make
... 42

building a program with IPA-several steps
... 41

building a program withIPA-single step40

building a program without IPA using
make .. 39

building a program without IPA-several
steps... 39

building a program without IPA-single
step .. 38

questions about IPA 42

Language options 78

Libraries

BLAS .. 181

FFTs .. 181

LAPACK... 181

LIB3F.. 181

shared object files................................ 173

Linux... 15

Header Files .. 15

Parallelization 16

Listing Files 89, 90, 91

Loop unrolling .. 26

Loops

failed auto-parallelization...................... 35

scalars.. 36

timing .. 35

Command-line Options 94

OpenMP C/C++ Pragmas........................ 137

OpenMP C/C++ Support Routines

omp_destroy_lock() 152

omp_get _thread_num() 150

omp_get_dynamic() 151

omp_get_max_threads()...................... 150

omp_get_nested()................................ 151

omp_get_num_procs() 151

omp_get_num_threads() 150

omp_in_parallel()................................ 151

omp_init_lock()................................... 152

Index 299

omp_set_dynamic()............................. 151

omp_set_lock() 152

omp_set_nested() 151

omp_set_num_threads()...................... 150

omp_test_lock() 152

omp_unset_lock()................................ 152

OpenMP Directives

syntax .. 119

OpenMP Environment Variables

MPSTKZ 136, 153, 182

OMP_DYNAMIC 136, 153

OMP_NESTED............................. 136, 153

OMP_NUM_THREADS................. 136, 152

OMP_SCHEDULE 136

OpenMP Fortran Directives 119

OpenMP Fortran Support Routines

omp_destroy_lock() 135

omp_get_dynamic() 135

omp_get_max_threads()...................... 134

omp_get_nested()................................ 135

omp_get_num_procs() 134

omp_get_num_threads() 134

omp_get_thread_num() 134

omp_in_parallel()................................ 134

omp_init_lock()................................... 135

omp_set_dynamic()............................. 135

omp_set_lock() 135

omp_set_nested() 135

omp_set_num_threads()134

omp_test_lock()...................................136

omp_unset_lock()................................135

OpenMP Pragmas

syntax ..137

Optimization..155

C/C++ pragmas 44, 163

C/C++ pragmas scope166

cache tiling ..87

default optimization levels44

Fortran directives 44, 155

Fortran directives scope161

function inlining 20, 113

global optimization..........................20, 24

inline libraries......................................114

Inter-Procedural Analysis.......... 20, 21, 38

IPA ..20, 21

local optimization..................................19

loop optimization20

loop unrolling............................ 20, 26, 86

loops..84

-O ..95

-O0 ..23

-O1 ..23

-O2 ..23

-O3 ..23

-Olevel ...23

parallelization..................................20, 33

300 Index

pointers ... 86

prefetching .. 85

vectorization.................................... 20, 27

Parallelization ... 33

auto-parallelization 33

failed auto-parallelization 35, 90

-Mconcur auto-parallelization............... 80

NCPUS environment variable............... 34

safe_lastval.. 37

user-directed.. 94

Parallelization Directives 119

Parallelization Pragmas........................... 137

Pragmas

C/C++ .. 9

omp barrier.. 146

optimization .. 163

scope ... 166

Prefetch directives................................... 170

Preprocessor

cpp... 11

Fortran... 11

Run-time Environment............................ 219

Shared object files................................... 173

Timing

execution ... 45

SYSTEM_CLOCK 45

Tools

PGDBG ... 4

PGPROF ... 4

Vectorization....................................... 27, 87

SSE instructions 88

Win32 Calling Conventions

C.. 209, 211

Default .. 209, 210

STDCALL................................... 209, 211

symbol name construction................... 210

UNIX-style.................................. 209, 211

	
	Table of Contents
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications
	Getting Started
	1.1 Overview
	1.2 Invoking the Command-level PGI Compilers
	1.2.1 Command line Syntax
	1.2.2 Command-line Options
	1.2.3 Fortran Directives and C/C++ Pragmas

	1.3 Filename Conventions
	1.3.1 Input Files
	1.3.2 Output Files

	1.4 Parallel Programming Using the PGI Compilers
	1.4.1 Running SMP Parallel Programs
	1.4.2 Running Data Parallel HPF Programs

	1.5 Using the PGI Compilers on Linux
	1.5.1 Linux Header Files
	1.5.2 Running Parallel Programs on Linux

	1.6 Using the PGI Compilers on Windows

	Optimization & Parallelization
	2.1 Overview of Optimization
	2.2 Getting Started with Optimizations
	2.3 Local and Global Optimization using (O
	2.3.1 Scalar SSE Code Generation

	2.4 Loop Unrolling using (Munroll
	2.5 Vectorization using (Mvect
	2.5.1 Vectorization Sub-options
	2.5.1.1 Assoc Option
	2.5.1.2 Cachesize Option
	2.5.1.3 SSE Option
	2.5.1.4 Prefetch Option

	2.5.2 Vectorization Example Using SSE/SSE2 Instructions

	2.6 Auto-Parallelization using (Mconcur
	2.6.1 Auto-parallelization Sub-options
	2.6.1.1 Altcode Option
	2.6.1.2 Dist Option
	2.6.1.3 Cncall Option

	2.6.2 Auto-parallelization Example
	2.6.3 Loops That Fail to Parallelize
	2.6.3.1 Timing Loops
	2.6.3.2 Scalars
	2.6.3.3 Scalar Last Values

	2.7 Inter-Procedural Analysis and Optimization using -Mipa
	2.7.1 Building a Program Without IPA – Single Step
	2.7.2 Building a Program Without IPA - Several Steps
	2.7.3 Building a Program Without IPA Using Make
	2.7.4 Building a Program with IPA
	2.7.5 Building a Program with IPA - Single Step
	2.7.6 Building a Program with IPA - Several Steps
	2.7.7 Building a Program with IPA Using Make
	2.7.8 Questions about IPA

	2.8 Default Optimization Levels
	2.9 Local Optimization Using Directives and Pragmas
	2.10 Execution Timing and Instruction Counting

	Command Line Options
	3.1 Generic PGI Compiler Options
	3.2 C and C++ -specific Compiler Options

	Function Inlining
	4.1 Invoking Function Inlining
	4.1.1 Using an Inline Library

	4.2 Creating an Inline Library
	4.2.1 Working with Inline Libraries
	4.2.2 Updating Inline Libraries - Makefiles

	4.3 Error Detection during Inlining
	4.4 Examples
	4.5 Restrictions on Inlining

	OpenMP Directives for Fortran
	5.1 Parallelization Directives
	5.2 PARALLEL ... END PARALLEL
	5.3 CRITICAL ... END CRITICAL
	5.4 MASTER ... END MASTER
	5.5 SINGLE ... END SINGLE
	5.6 DO ... END DO
	5.7 BARRIER
	5.8 DOACROSS
	5.9 PARALLEL DO
	5.10 SECTIONS … END SECTIONS
	5.11 PARALLEL SECTIONS
	5.12 ORDERED
	5.13 ATOMIC
	5.14 FLUSH
	5.15 THREADPRIVATE
	5.16 Run-time Library Routines
	5.17 Environment Variables

	OpenMP Pragmas for C and C++
	6.1 Parallelization Pragmas
	6.2 omp parallel
	6.3 omp critical
	6.4 omp master
	6.5 omp single
	6.6 omp for
	6.7 omp barrier
	6.8 omp parallel for
	6.9 omp sections
	6.10 omp parallel sections
	6.11 omp ordered
	6.12 omp atomic
	6.13 omp flush
	6.14 omp threadprivate
	6.15 Run-time Library Routines
	6.16 Environment Variables

	Optimization Directives and Pragmas
	7.1 Adding Directives to Fortran
	7.2 Fortran Directive Summary
	7.3 Scope of Directives and Command Line options
	7.4 Adding Pragmas to C and C++
	7.5 C/C++ Pragma Summary
	7.6 Scope of C/C++ Pragmas and Command Line Options

	Special Scope Rules
	7.7 Prefetch Directives

	Libraries and Environment Variables
	8.1 Using builtin Math Functions in C/C++
	8.2 Creating and Using Shared Object Files
	8.3 Creating and Using Dynamic-Link Libraries on Windows
	8.5 Using LIB3F
	8.6 LAPACK, the BLAS and FFTs
	8.7 The C++ Standard Template Library
	8.8 Environment Variables

	Fortran, C and C++ Data Types
	9.1 Fortran Data Types
	9.1.1 Fortran Scalars
	9.1.2 FORTRAN 77 Aggregate Data Type Extensions
	9.1.3 Fortran 90 Aggregate Data Types (Derived Types)

	9.2 C and C++ Data Types
	9.2.1 C and C++ Scalars
	9.2.2 C and C++ Aggregate Data Types
	9.2.3 Class and Object Data Layout
	9.2.4 Aggregate Alignment
	9.2.5 Bit-field Alignment
	9.2.6 Other Type Keywords in C and C++

	Inter-language Calling
	10.1 Overview of Calling Conventions
	10.2 Inter-language Calling Considerations
	10.3 Functions and Subroutines
	10.4 Upper and Lower Case Conventions, Underscores
	10.5 Compatible Data Types
	10.5.1 Fortran Named Common Blocks

	10.6 Argument Passing and Return Values
	10.6.1 Passing by Value (%VAL)
	10.6.2 Character Return Values
	10.6.3 Complex Return Values

	10.7 Array Indices
	10.8 Example - Fortran Calling C
	10.9 Example - C Calling Fortran
	10.10 Example - C ++ Calling C
	10.11 Example - C Calling C++
	10.12 Example - Fortran Calling C++
	10.13 Example - C++ Calling Fortran
	10.14 Windows Calling Conventions
	10.14.1 Windows Fortran Calling Conventions
	10.14.2 Symbol Name Construction and Calling Example
	10.14.3 Using the Default Calling Convention
	10.14.4 Using the STDCALL Calling Convention
	10.14.5 Using the C Calling Convention
	10.14.6 Using the UNIX Calling Convention

	C++ Name Mangling
	11.1 Types of Mangling
	11.2 Mangling Summary
	11.2.1 Type Name Mangling
	11.2.2 Nested Class Name Mangling
	11.2.3 Local Class Name Mangling
	11.2.4 Template Class Name Mangling

	Run-time Environment
	A1.1 Programming Model (X86)
	A1.2 Function Calling Sequence
	A1.3 Function Return Values
	A1.4 Argument Passing
	A2.1 Programming Model (X86-64 Linux)
	A2.2 Function Calling Sequence
	A2.3 Function Return Values
	A2.4 Argument Passing
	A2.5 Fortran Supplement
	A2.6 Fortran Fundamental Types
	A2.7 Naming Conventions
	A2.8 Argument Passing and Return Conventions
	A2.9 Inter-language Calling

	Messages
	B.1 Diagnostic Messages
	B.2 Phase Invocation Messages
	B.3 Fortran Compiler Error Messages
	B.3.1 Message Format
	B.3.2 Message List

	B.4 Fortran Runtime Error Messages
	B.4.1 Message Format
	B.4.2 Message List

	C++ Dialect Supported
	C.1 Anachronisms Accepted
	C.2 New Language Features Accepted
	C.3 The following language features are not accepted
	C.4 Extensions Accepted in Normal C++ Mode
	C.5 cfront 2.1 Compatibility Mode
	C.6 cfront 2.1/3.0 Compatibility Mode

	Index

